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ABSTRACT: Finding and identifying rare diseases through images is a lasting challenge in routine medical work because of 

the diseases' uncommon nature and limited data. When it comes to seeing how many diagnostic tools work, Convolutional 

Neural Networks (CNNs) stand out with their great potential. One difficulty with these models is that their outcomes are less 

impressive when the data they receive is not adequate, which is often true for rare diseases. To overcome this drawback, this 

research looks at applying deep transfer learning to support stronger identification of rare diseases using knowledge from 

common or large-scale images. Here, we review and analyze various models (e.g., VGG, ResNet, DenseNet) fully, and we 

study how fine-tuning these models works for datasets such as ocular melanoma, Gaucher disease and neurofibromatosis. We 

rely on a broad method that uses data filtering, adapts the model to the clinical environment, measures the results using 

metrics and includes the Grad-CAM technique for interpreting what the model learns. It is clear from the findings that using 

transfer learning leads to better classification accuracy, sensitivity and specificity for every dataset. The highest accuracy, of 

92.4%, was found in Gaucher disease classification using the modified DenseNet201 model with a hybrid loss function. Being 

able to show the problem areas in patient images with Grad-CAM made it easier for medical experts to trust the model’s 

performance. The research confirms that transfer learning is helpful for diagnosing rare diseases with the help of images and 

suggests it could improve early diagnosis and treatment. 

 

KEYWORDS: Deep learning, Transfer learning, Rare diseases, Medical imaging, Convolutional neural networks, Grad-

CAM, Classification, Fine-tuning. 

 

1. INTRODUCTION 
There are more than 7,000 distinct conditions known as rare diseases, and together they harm over 300 million people around 

the world, since many regions define rare diseases as those affecting fewer than 1 in 2,000 people. Despite the significant 

effects of these diseases, it is often difficult to diagnose quickly since there are not many specialists, patient data is restricted, 

and the symptoms look similar to more common problems. Because of these factors, many patients receive the wrong 

diagnosis and must wait for proper treatment, which can harm their outcomes. [1-4]Such approaches may seem promising, but 

they often call for plenty of labeled data to achieve great results. Yet, with rare diseases, gathering and annotating data is 

normally impractical because the number of cases is low, and it costs and takes a lot of effort to annotate the sample sets. Since 

there is not enough data, it becomes much harder to develop useful diagnostic tools. For this reason, new approaches are 

needed to teach machines from small and uneven data sets, providing reliable and important results for medical use. Deep 

transfer learning becomes a strong option, making it possible to use pre-trained models in environments lacking much data.  

 

1.1. IMPORTANCE OF DEEP TRANSFER LEARNING FOR AUTOMATED DIAGNOSIS 

Deep transfer learning has become an important technique for building intelligent diagnostic systems, mainly in medical 

imaging. Because it can quickly adapt the work of known models to new, narrow medical data, it helps a lot with automated 

diagnosis. The importance of this section is explained by looking at important dimensions. 

• Addressing Data Scarcity in Medical Imaging: A serious issue in creating AI models for medical diagnosis is that 

there are not enough labeled examples for rare diseases. Because experts are needed to interpret medical images, 

annotating them can be both slow and costly. This problem is eased when pre-trained models developed on ImageNet 

and similar datasets are adapted for medical situations. By using this method, models can reach high performance 

even with less data than before. 

•  Enhanced Feature Representation and Generalization: Even before training, deep CNNs learn many general 

features like spotting edges, recognizing textures and analyzing shapes, from large collections of data. In medical 

imaging, the features from neural networks can be adjusted to pick up small features related to medical problems. As 

a result, such models can work well with data they have not seen before and usually outperform models trained from 

nothing, if there are very few training examples. 

• Accelerated Model Convergence and Efficiency: Fast and deep learning models may be hard to build from the start, 

using up much time and using many resources. Transfer learning provides a well-conditioned start, which lowers the 
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training time needed and lowers the chance of overfitting. This capability becomes very important in clinics, as it 

allows models to support clinical decisions right away. 

 

 
FIGURE 1 Importance of deep transfer learning for automated diagnosis 

 

• Enabling Application to Rare and Specialized Conditions: Because most public datasets do not contain sufficient 

data, modeling rare diseases is often inaccurate. The approach helps scientists design powerful diagnostic tools using 

compact and carefully prepared data on different conditions. From the findings in this study, it is clear that using 

DenseNet201 gave accurate results for both Gaucher and ocular melanoma. 

•  Supporting Explainability and Clinical Trust: Grad-CAM and other XAI methods are used more often with 

transfer learning to show what each model’s prediction means for an image. As a result, the messages produced by AI 

are ones that doctors can understand easily, which encourages them to adopt the technology at work. 

 

1.2. EMERGENCE OF DEEP LEARNING 

Deep learning and especially CNNs, have transformed image analysis by reaching new goals in tasks like classifying images, 

detecting objects and dividing objects from backgrounds. CNNs can find important visual features by themselves, which 

makes them excellent for dealing with challenging visual patterns. Medical imaging uses CNNs to detect disorders such as 

diabetic retinopathy, cancer of the lung and lesions found on the skin, frequently achieving better results than people in 

controlled scenarios. CNNs are capable to a great degree, though they have an important disadvantage: using big, labeled 

datasets. The reliance on expert knowledge causes major delays when using deep learning for rare illnesses, because proper 

information is rare, hard to obtain, and there are not many patients affected. Facing this issue, deep transfer learning has 

become an effective and sensible approach. In transfer learning, a model that has been trained on a large dataset (such as 

ImageNet) is used and reformed to work with a different, smaller dataset. Using this approach, the model keeps its basic visual 

information and adjusts its parameters to specialize in recognizing what’s in a specific area. Because of this, extensive data is 

not needed in the target area, and training goes faster. In cases where collecting a large number of labeled medical images is 

hard, transfer learning helps scientists create strong models with only a few images. Besides, it helps models learn more 

generally and avoids overfitting, which is likely in small datasets. As a result, AI tools using deep learning methods can now 

provide reliable automated diagnosis in situations where healthcare data is limited. 

 

2. LITERATURE SURVEY 
2.1. DEEP LEARNING IN MEDICAL IMAGING 

These days, deep learning has greatly improved medical imaging, mainly driven by Convolutional Neural Networks (CNNs). 

Many researchers have shown that CNNs outperform standard techniques for image analysis, most noticeably in detecting 

diabetic retinopathy, pneumonia and skin cancer. [5-8] It has been demonstrated by Rajpurkar et al. and Esteva et al. that, in a 

few cases, computer models can match or excel humans' diagnostic accuracy. They clearly show that advanced algorithms can 

make clinical procedures much more efficient and results more accurate in different imaging areas in medicine. 

 

2.2. TRANSFER LEARNING PARADIGMS 

Using transfer learning is becoming popular in medical imaging, since it helps deal with the common problem of not having a 

lot of data. Mainly, it applies either feature extraction or fine-tuning paradigms. Using a pre-trained CNN as a feature extractor, 

it is possible to generate useful representations in medical images without training them again. In contrast, fine-tuning requires 

updating portions or all of the network by exposing it to medical data so that it works better for that domain. Thanks to Shin et 

al. and Tajbakhsh et al., we now know that applying transfer learning can successfully improve results on small medical 

datasets and is practical to use in real-world clinics. 
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2.3. APPLICATIONS IN RARE DISEASES 

The field of deep learning has been applied to common illnesses, but much less to rare illnesses. Having limited labeled data 

and many different ways that rare diseases appear is a major challenge. Even so, new ideas have been shared for exploring this 

area. For example, making use of different imaging techniques in transfer learning has helped analyse rare genetic syndromes. 

In addition, investigating mining features from a small set of examples and generating more data to train with has been done to 

solve the issue of limited data. But, since many of these techniques rely on large computing resources, they may not work well 

for various conditions and patient types. 

 

2.4. EXPLAINABLE AI IN HEALTHCARE 

The integration of explainable AI (XAI) should be adopted in healthcare to help build trust and transparency among clinicians 

and patients. Unlike traditional models, explainable AI techniques give us an idea of how deep learning models work. Thanks 

to Grad-CAM, LIME and SHAP, it is easier to identify which areas of a medical image impact the predictions made by the 

model. Such visual tools assist in testing the model and provide help for clinicians in checking AI-provided diagnoses, which 

boosts the use and trust in AI-based decision-making in health care. 

 

3. METHODOLOGY 
3.1. DATASET DESCRIPTION 

 
FIGURE 2 Dataset description 

 

• Gaucher Disease CT Scans: The dataset contains computed tomography (CT) images from patients diagnosed with 

Gaucher disease, which impacts the spleen, liver and bone marrow. [9-12] Because the data is proprietary, it was 

gathered with clinical collaboration, and expert radiologists supplied the annotations. Since the dataset has axial and 

coronal views, one can examine changes in the organs and bones, as well as major symptoms of Gaucher disease. 

• Ocular Melanoma Retinal Images: This free dataset contains detailed eye images used to help identify ocular 

melanoma. I used ophthalmology data from a range of screening and research sources, which included both well-

faded and disease-causing images. The addition of annotations points out tumors, turning the collection into one that 

can train deep learning models to spot and classify abnormalities. 

• Neurofibromatosis MRI Scans: Magnetic resonance images in the Neurofibromatosis MRI dataset are taken of 

patients with neurofibromatosis, which causes tumors along nerves. All imaging data within the dataset are open for 

everyone to use and cover T1-weighted, T2-weighted and FLAIR sequences. It contains many different-sized and 

severity cases, with each containing labeled areas for tumors to support model growth. 

 

3.2. PREPROCESSING 

Preprocessing the data is important for deep learning in medical imaging because it maintains consistency, improves the 

model’s results and reduces difficulties from biases. In the study, histogram equalization, image resizing and data 

augmentation were used as three major preprocessing techniques. First, histogram equalization was used to improve the 

contrast in the medical images. The technique does away with uneven light intensity and makes it easier to see all the 

anatomical and abnormal features, no matter how small they appear in the beginning. With improved contrast, histogram 

equalization allows the neural network to recognize important features, mostly in CT scans and MRI images that are grayscale. 

After that, I adjusted all images to 224x224 pixels, making them suitable for entering popular convolutional neural networks 

such as VGG16, ResNet and EfficientNet. By making the images at a uniform size, both compatibility and the amount of time 

needed to calculate things decrease. Reducing the resolution slightly may lower the quality, but it makes training and including 

in deep learning pipelines much easier.  

 

To ensure the results are useful for more cases and to resolve the problem with scarce rare disease data, data augmentation was 

used. Examples were random rotation, zooming in and horizontal flipping. Rotation made the model unaware of image 

rotation, and zooming was used to simulate moving the device closer or farther. When anatomical features on a retinal or MRI 
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image happen to be mirrored or symmetrical, horizontal flipping brings the most beneficial results. Because of this 

augmentation, the training set became more diverse, which helped the model remain reliable when facing data it had not seen 

before. Combined, these tasks helped to adjust the data, add richness to the training process and prepare the images for more 

precise feature analysis by deep neural networks. 

 

3.3. MODEL ARCHITECTURES 

 
FIGURE 3 Model architectures 

 

• VGG16: The Visual Geometry Group at Oxford designed and built the VGG16 network, which uses deep 

convolutional layers. It has a simple and the same architecture with 16 layers, out of which there are 13 convolutional 

layers and 3 fully connected layers. VGG16 relies on tiny 3x3 convolution filters, helping it to spot fine spots in 

images while keeping its calculations quick. The combination of its detailed thinking and easy use leads to its great 

adoption for transfer learning in medical imaging, as its knowledge from ImageNet can be used to get and fine-tune 

features. 

• ResNet50: ResNet50, which is 50 layers deep, is celebrated for using residual learning by means of shortcut 

connections. Because of these residual blocks, the problem of vanishing gradients can be solved, enabling networks to 

train much further. Because of its deep and powerful design, ResNet50 efficiently detects complex features seen in 

medical imaging. Because features in cancer detection or segmented organs are often subtle and must be conserved, it 

is very useful in these tasks. 

• DenseNet201: DenseNet201 is a convolutional neural network where every layer is densely connected with others 

and consists of 201 layers. Rather than connecting layers one by one, as happens in traditional architectures, DenseNet 

links every layer to all others in a feed-forward style. As a result, we get better parametrization and enhanced transfer 

of important features. Because DenseNet201 shares features from all parts of the network, it is especially good for 

tasks like finding rare disease indicators. 

 

3.4. TRANSFER LEARNING STRATEGY 

 
FIGURE 4 Transfer learning strategy 

 

• ImageNet Model: Generally, transfer learning takes a pre-trained model that was trained on a large set of over a 

million images across a thousand categories, called the ImageNet dataset. [13-15] VGG16, along with ResNet50 and 
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DenseNet201, have already acquired features that work for various kinds of tasks and are not specific to one kind of 

domain. You can use these pre-trained models to begin training on medical images, as this helps a lot when your data 

is limited and balanced unevenly, as in the case of studying rare diseases. 

• Feature Extractor: Initially, the pre-trained model helps to convert data into important features. The unchanged 

convolutional feature in the ImageNet model is used, and its results are then used to discover high-level information 

in medical images. With this method, we train on the ImageNet dataset and reuse the image understanding learned 

there to address tasks in medicine. This method is also efficient from a computational standpoint and proves very 

valuable when there are not many annotated medical records are not many. 

• Fine-tuned Classifier: After identifying key features, custom classifiers are added in the end to suit the rare disease 

classification problem. Generally, these classifiers have a few connected layers and end with a layer that is suitable for 

classifying data as binary or multiclass. In the stage of fine-tuning, the net is retrained with a few or even all of its 

layers on the dataset you want the model trained for. Because of this, what the model has learned can be adjusted to 

correspond with medical images. 

• Rare Disease Prediction: At the end of this pipeline, we are left with a model that can accurately predict rare 

diseases. The combination of basic visual features from a pre-trained network with task-specific fine-tuning allows the 

network to identify rare conditions such as Gaucher disease, ocular melanoma and neurofibromatosis. This way of 

learning helps detect diseases more accurately, cuts down on training time and doesn’t rely heavily on very large 

datasets. 

 

3.5. TRAINING DETAILS 

 
FIGURE 5 Training details 

 

• Optimizer: Adam: To benefit from adaptive learning and efficient treatment of sparse gradients, the Adam optimizer 

was selected for training. Adam takes the best aspects of AdaGrad and RMSProp by computing individual learning 

rates for the various parameters. For this reason, these methods are most effective for neural networks applied in 

medical image classification and other tasks that require quick and sound convergence. 

• Learning Rate: 1e-4: To make sure the model weights changed steadily, 1e-4 was picked as the learning rate. It 

allows the model to slow down its optimism, so it doesn’t overshoot the correct solution when tuning pre-trained 

networks. It gives importance to quick learning and accuracy, which helps the model learn new patterns in medical 

images without greatly altering the helpful features it has already learned. 

• Loss: Categorical Cross-Entropy and Focal Loss: Two loss functions were chosen depending on what the task 

required. Standard multi-class classification tasks used categorical cross-entropy to calculate the distance between 

what was predicted and what was actually the case. Furthermore, focal loss was added because rare disease datasets 

tend to have unbalanced classes. Focal loss decreases the importance given to correctly classified examples and works 

to improve performance on minority classes. 

• Epochs: 50: Since the model was allowed to train for 50 epochs, it got a balanced chance to converge and “learn” the 

data correctly with minimal risk of overfitting. Testing and the tracking of validation loss were used to decide the 

duration. Calling the learning procedure again at predetermined points, as well as using early stopping, was done to 

improve results and stop computation when it was no longer required. 

• Batch Size: 32: A batch size of 32 was used to make the model efficient and able to apply to different cases. Thanks 

to this batch size, the GPU memory is put to good use, maintaining a stable estimation of the gradients. It supports 

quicker training while still holding up well for many newly designed deep learning architectures. 
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3.6. EXPLAINABILITY 

For a good relationship with doctors, medical AI systems must be easy for them to understand. Since the inner workings of 

deep learning models are unclear, Gradient-weighted Class Activation Mapping (Grad-CAM) was used to make diagnostic 

choices more clear. Many use Grad-CAM because it shows which areas of an image are most important for the model’s 

decision. With this approach, the gradients of the target class move to the final convolutional layer, where they help create a 

rough heatmap that fits onto the original image. Using Grad-CAM, pathology-relevant areas were found in CT, MRI and 

retinal scans for cases with Gaucher, neurofibromatosis and ocular melanoma. CT scan images of Gaucher disease showed that 

using Grad-CAM helped find increased sizes of the spleen and liver, which are core symptoms of the disease.  

 

Heatmaps from retinal images for ocular melanoma also highlighted pigmented lesions or tumors, lining up well with the 

regions selected by clinicians. For neurofibromatosis MRI scans, what stood out to the model were parts of the brain that 

contained nerve sheath tumors or unhealthy tissue growth, as these are key to the disease diagnosis. With Grad-CAM, the 

study demonstrated that the model learned important features from the diagnostic images and also offered insight into why 

each prediction was made. With these visuals, healthcare professionals can easily confirm AI decisions by checking them 

against common medical signs. Besides, Grad-CAM helps reveal where in images the model relies too much on unnecessary 

details, which could be signs of incorrect predictions. Using explainability, Grad-CAM is a useful addition to diagnostics in 

healthcare, making sure deep learning models are more secure and reliable in areas such as rare disease detection. 

 

4. RESULTS AND DISCUSSION 
4.1. PERFORMANCE METRICS 

Many performance metrics were used to examine how effective the deep learning models are for classifying rare diseases, 

including accuracy, precision, recall, F1-score and AUC-ROC. 

       
TABLE 1 Model performance comparison 

Model Accuracy Precision Recall F1 - Score AUC-ROC 

VGG16 85.2% 84.7% 86.0% 85.3% 91% 

ResNet50 89.5% 88.0% 90.1% 89.0% 93% 

DenseNet201 92.4% 93.1% 91.8% 92.4% 96% 

 

 
FIGURE 6 Graph representing model performance comparison 

 

• Accuracy (%): Accuracy checks the proportion of correct cases out of all the items being predicted. Even though it 

can give a clear idea of the model’s overall accuracy, it can be misleading for imbalanced data. In the findings, 

DenseNet201 obtained a precision level of 92.4%, followed by ResNet50 with 89.5% and 85.2% for VGG16. 

DenseNet201 has shown its capability to find the fine differences in complicated medical images, a skill vital for 

diagnosing rare illnesses. 

• Precision (%): True positive predictions are referred to as precision when considering them along with all instances 

predicted as such. If tests are precise, fewer incorrect positive results are produced, making medical diagnostics safer. 
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Among all methods, DenseNet201 had the best specificity, identifying correct disease cases in 93.1% of cases. 

DenseNet201 achieved the next highest result and caused slightly fewer false positives than VGG16 at 84.7% and 

ResNet50 at 88.0%. 

• Recall (%): Recall or sensitivity is the ratio of correctly predicted positive cases out of the actual positive instances. It 

matters most in healthcare, as missing a true case (false negative) can mean serious problems for the patient. 

ResNet50 achieved a recall score of 90.1%, DenseNet201 was just behind at 91.8% and VGG16 had a score of 

86.0%. The high recall scores suggest that all models are good at finding cases of infection. 

• F1-Score (%): Combining precision and recall, the F1-score gives a single result that measures them both evenly. It 

becomes particularly crucial when dealing with class imbalance, since it weighs both false positive and false negative 

results. DenseNet201 continued its dominance by obtaining the highest F1-score at 92.4%, showing it works well in 

all areas. While all three models were reasonably well adjusted, DenseNet201 showed the greatest reliability, 

followed by ResNet50 and VGG16 with 89.0%, 85.3% and accuracy, respectively. 

• AUC-ROC: AUC-ROC evaluates the model’s ability to split different classes at different decision levels. 

Classification ability is high when the value is closer to 1. DenseNet201 gave a very strong AUC of 96%, meaning it 

was very effective at telling between malignant and benign tumors regardless of the threshold used. The AUCs for 

ResNet50 and VGG16 were 93% and 91%, respectively—neither was as strong as DenseNet201, but both suggest 

good results. 

 

4.2. ANALYSIS 

The three tested models, DenseNet201, scored highest on every performance factor examined in the experiments. More 

significantly, it scored an F1-score of 92.4% and an AUC-ROC of 0.96, proving that it has a well-balanced and robust ability 

to forecast. DenseNet is unique because every layer in the network is connected to every previous layer, information-wise. By 

using this design, the same features can be reused, avoiding repetition and also helping improve how gradients are calculated 

during backpropagation. As a result, the extraction of features becomes more enlightening, most helpful for diseases such as 

Gaucher’s, since the pathological signs are not always clear. ResNet50 achieved impressive results, showing strong 

performance in the identification of neurofibromatosis in MRIs. This major advantage, called residual learning with skip 

connections, allows deep neural networks to be efficiently trained since the gradient doesn’t vanish.  

 

Because of this, ResNet50 was able to spot deeper features important for finding nerve sheath tumors and other problems 

linked to neurofibromatosis. Even though VGG16 wasn’t as accurate as VGG19, it managed to perform effectively on the 

ocular melanoma dataset, showing that easy-to-follow data can help even basic models perform well. The fact that its layers 

are placed in sequence and look the same made it simpler to understand and train with smaller datasets. More clearly, Grad-

CAM gave us images that highlighted the model’s decisions, helping it become less opaque. The activation maps called out 

clinically useful findings in retinal pigmented lesions, MRI abnormal growths and enlarged organs in CT images. These visual 

cues matched the clinician-marked annotations, proving that the models were understanding key and diagnostic information. 

Because AI is explainable, there is more trust and understanding, both of which are necessary for including AI systems in 

hospitals and partnering with AI in rare disease diagnosis. 

 

4.3. LIMITATIONS  

Despite promising results, the study faced several limitations: 

• Limited Dataset Availability: Part of the difficulty in this research was the lack of detailed data about exceptional 

diseases for training. Because rare diseases affect few people, building a large and well-balanced data collection is 

tough. Although techniques were used to expand the training data via rotation, flipping and zooming, they fail to 

render the full variety encountered in real medical images. For this reason, it’s possible that models trained on one 

dataset will not work as well with unseen patient information from other institutions or with different imaging 

hardware. 

• Overfitting on Small Datasets: Another problem, especially in the small Ocular Melanoma set, was overfitting. 

Although dropout, early stopping and data augmentation were implemented, a number of our models had different 

levels of accuracy in training and validation. This tells us that the models were learning only the spurious patterns of 

the training sets, not the main lessons. Because of overfitting, predictions from medical imaging may not be accurate 

enough when applied in medical settings. 

• High Computational Cost: When DenseNet201 was introduced, it required a lot of processing power. Having deep 

models analyze high-resolution medical pictures demanded special GPUs, lots of time and lots of insight into tuning 

the hyperparameters. Because of their requirements, such systems may not be possible in small clinics or hospitals 

that do not have access to advanced technology. It also adds to worries about expanding the approach because of the 

time and effort it takes to run these calculations for rare diseases or higher-volume imaging. 

 

5. CONCLUSION 
It demonstrates that deep transfer learning significantly improves the correct classification of rare diseases by medical imaging. 

The authors use pre-trained DenseNet201 and show that deep architectures can do very well in situations with fewer examples. 
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Among these, DenseNet201 surpassed ResNet50 and VGG16 in accuracy, F1-score and AUC-ROC, confirming its ability to 

identify disease-related features. Using the small world pattern for links made it easy to share and update training features and 

allowed the program to accurately detect Gaucher disease’s subtle causes. One important reason for the progress was using 

transfer learning, which involved adopting models that have been trained on ImageNet data and either using their features or 

customizing them for medical issues. Besides helping the models finish training, it improved how the models generalized to 

details in small, technical datasets. Grad-CAM helped by making it easy for doctors to tell where the model looked for 

information to make its predictions.  

 

Comparing the results with actual clinical observations, the heatmaps were also found to be reliable and straightforward. Even 

so, the study points out that there are still problems, for example, a lack of annotated data for rare diseases, the threat of 

accuracy dropping on small training sets and the major effort needed to train deep learning models. Even so, these findings 

show that bringing AI into diagnosis can be useful when experts are not readily accessible. Future work will aim to solve 

existing problems by applying unsupervised domain adaptation to allow models to transfer from one institution to another. 

Federated learning, recognized by the study, makes it possible to jointly train machine learning models with data kept separate 

and secure from each other. Besides, linking data from imaging with that from genetics, clinics, or laboratories might 

strengthen the process and the stability of developed models. All in all, this study reaffirms that deep learning will likely play a 

major role in diagnosing rare diseases and help create more personalized medical care. 
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