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ABSTRACT: Multiobjective optimization in fractional calculus has made important developments, mainly due to the addition of 

fractional operators to complex optimization methods. Some recent research has applied fractional differential-difference 

operators to generalize traditional optimization ideas, forming new groups of functions known as local fractional Univex functions. 

As a result, people can build strong, weak, and converse duality theorems for multiobjective fractional problems, which provide 

advancement in solving mathematically complex non-convex and non-smooth optimization problems. Robust optimization methods 

have been applied to multiobjective fractional programming to consider uncertain data and to introduce conditions called ε-

optimality and robust ε-saddle points for weakly efficient solutions. With regard to computation, using Branch-and-Cut methods 

has made it possible to speed up optimization on linear fractional functions by removing inadequate solutions from efficient sets of 

integer quadratic problems. Such numerical methods have made it easier to solve fractional derivatives with great precision and 

now support applications in wave propagation, models of viscoelastic materials, and machine learning. New optimization 

techniques make it easier to solve multiple challenges by lowering computational effort without sacrificing the accuracy of results. 

All these changes together join theory and practice, giving new tools to areas where mismatched objectives and fractional 

mathematics are important. 

 

KEYWORDS: Multiobjective optimization, Fractional calculus, Duality theorems, Branch-and-Cut, Numerical methods, Robust 

optimization, Univex functions, Spectral approximations. 

 

1. INTRODUCTION 
The approach of multiobjective optimization in fractional calculus aims to deal with complicated systems that face different 

objectives and non-integer order dynamics. [1-3] In this area, fractional calculus’s capability to model processes with memory and 

fractality is combined with optimization methods, which allow solving engineering, economics, and AI problems that cannot be 

handled using standard methods. 

 

1.1. THEORETICAL FOUNDATIONS IN FRACTIONAL OPTIMIZATION 

The latest theoretical developments use local fractional differential-difference operators to generalize classical optimization 

concepts and deal with non-convex and non-smooth situations using local fractional Univex functions. These updates are important 

for creating a variety of duality theorems (such as strong, weak, and converses) that handle multiple goals when problems involve 

fractal regions. Robust optimization approaches have found use here to address data uncertainty in fractional programming, 

defining ε-optimality and robust ε-saddle points for all weakly efficient solutions. With these new ideas, solutions are stable and 

can respond well to the real-world risks and noise typical in data processing. 

 

1.2. COMPUTATIONAL STRATEGIES AND ALGORITHMIC INNOVATIONS 

For computational purposes, LCNSGA-III is a hybrid technique using both Latin hypercube sampling and chaos theory to enhance 

the adaptability of pumped turbine governing systems by improving fractional-order PID controllers in complicated systems. 

Methods from distributed optimization and fractional PID controls have achieved quicker convergence for network resource 

allocation problems than usual integer-based techniques. On many-variable problems, both multi-fractional-order optimization 

algorithms and Branch-and-Cut methods assist in finding solutions by systematically removing ineffective candidates from integer 

quadratic programming. Fractional derivative computations become more accurate when using spectral approximations and finite 

difference schemes, so they can model both viscoelastic materials and chaotic Lorenz attractor systems with ease. 

 

All these advancements come together to solve the difficulties of dealing with complex calculations and theoretical correctness, 

making it possible to use scalable tools for regions in science focused on multiobjective problems involving fractions. Handling 
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problems that have memory effects and interactions occurring at different scales is now possible because of the combination of 

fractal calculus and multiobjective frameworks. 

 

2. FRACTIONAL CALCULUS AND MULTIOBJECTIVE OPTIMIZATION FRAMEWORKS 
2.1. BASICS OF FRACTIONAL CALCULUS 

Fractional calculus allows you to use derivatives and integrals with non-whole (fractional) numbers, so it can model events 

involving inherited or repeated actions that are not completely explained by integer calculus. [4-7] The Riemann–Liouville (RL) 

derivative is considered both historically significant and used more often than the other common definitions of fractional 

derivatives. 

 

𝐷ᵗᵅ 𝑓(𝑡)  =  (1/𝛤(𝑛 −  𝛼)) 𝑑ⁿ/𝑑𝑡ⁿ ∫ ₀ᵗ (𝑓(𝜏)/(𝑡 −  𝜏)^(𝛼 −  𝑛 +  1)) 𝑑𝜏 

 

Where n=⌈α⌉ (the smallest integer greater than or equal to α), and Γ(⋅)denotes the gamma function, the definition extends the idea 

of repeated integration and differentiation to real or complex orders, and thus offers a potent formalism to characterize systems 

whose dynamics are nonlocal or fractal. 

 

The most important thing is that the derivative of a constant is never zero, in contrast with the classical calculus, a consequence of 

the nonlocal character of the fractional operators. The RL operators also fulfill a semigroup property, which plays a central role in 

building the solutions of fractional differential equations. The RL approach can be further generalized to analytic functions in the 

complex plane and is related to other definitions, including the Caputo derivative, which is commonly considered to be superior in 

initial value problems because of how it handles initial conditions. Fractional calculus and the RL derivative in particular have uses 

in many areas, such as viscoelasticity, anomalous diffusion, control theory, and signal processing when integer-order models fail to 

describe observed data. Fractional operator flexibility and generality the flexibility and generality of fractional operators make 

them essential in the modeling of systems exhibiting memory effects as well as complicated temporal or spatial organization. 

 

2.2. MULTIOBJECTIVE OPTIMIZATION CONCEPTS 

Multiobjective optimization (MOO) deals with issues where two or more objectives are simultaneously optimized, and the 

objectives are conflicting. As opposed to the single-objective optimization where a single optimal solution is desired, in MOO, the 

goal is to find a set of solutions that represent the best possible trade-offs among the objectives. In mathematical terms, a general 

multiobjective optimization problem can be striking as: 

 

𝑚𝑖𝑛 𝐹(𝑥)  =  [𝑓₁(𝑥), 𝑓₂(𝑥), . . . , 𝑓ₖ(𝑥)], 𝑥 ∈  𝛺 

 

With F(x) a vector of k objective functions, and with Omega the set of feasible solutions, induced by constraints on the decision 

variables x. 

 

Pareto optimality is the main idea in MOO. A solution x* is Pareto optimal, and there does not exist a solution x in Ω such that fᵢ(x) 

≤ fᵢ(x*) for all i and fⱼ(x) < fⱼ(x*) for at least one j. The collection of all Pareto optimal solutions makes the Pareto front, which is 

the trade-off surface among the objectives. The decision-makers can then choose desirable solutions according to other criteria or 

preferences. 

 

MOO has been used extensively in engineering design, economics, logistics and artificial intelligence, where cost, performance, 

reliability and other objectives must often be traded off against each other. Traditional methods of tackling MOO problems are 

scalarization (transforming the multiobjective problem into a single-objective problem through weighted sums or utility functions), 

evolutionary algorithms and interactive methods where feedback of the decision-maker is included. MOO frameworks can be 

extended, using fractional calculus, to systems which exhibit memory, hereditary or fractal characteristics, allowing optimization in 

more realistic situations to be more generally and precisely performed. New mathematical problems and possibilities are created by 

the incorporation of fractional operators in MOO, including the requirement of generalized duality theorems and robust 

optimization methods to deal with the uncertainty and non-smoothness of the objective functions presented by data. 
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FIGURE 1 General process of multiobjective optimization 

 

3. PROBLEM FORMULATION 
3.1. STATEMENT OF THE MULTIOBJECTIVE FRACTIONAL OPTIMIZATION PROBLEM 

Multiobjective fractional optimization problem is used to minimize a vector of objective functions with dynamic constraints that 

are governed by fractional differential equations. [8-10] The problem can be formulated formally as: 

 

min J(x) = [J₁(x), J₂(x), ..., Jₖ(x)] 

subject to: Dᵗᵅ x(t) = f(x(t), u(t)),  x(0) = x₀ 

Start 

Define Objective Functions [f1(x), f2(x), ..., fk(x)] 

 

Define Feasible Region Ω (Constraints) 

 

Check for Conflicts Between Objectives 

Apply Optimization Method: 

Scalarization 

  Evolutionary Algorithms 

  Interactive Techniques 

Generate Set of Pareto Optimal Solutions 

 

Construct Pareto Front 

 

Decision-Maker Selects Preferred Solution 

End 
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FIGURE 2 Workflow of multiobjective fractional optimization 

 

With Jᵢ(x) being the objective functions to be minimized, Dᵗᵅ the fractional derivative (usually in the Riemann-Liouville or Caputo 

sense), x(t) the state vector, u(t) the control or decision vector, and x₀  the initial state. The admissible controls determine a feasible 

set Ω, which is given by the admissible controls and any other constraints on the state and control variables. 

Each objective Jᵢ(x) can be of the form: 

Jᵢ(x) = ∫₀ᵀ Lᵢ(x(t), u(t), t) dt + Φᵢ(x(T)) 

Start 

Define Objective Functions J1(x), J2(x), ..., Jk(x) 

 

Define Fractional Dynamics: Dᵗᵅ x(t) = f(x(t), u(t)), x(0) = x₀ 

 

Choose Solution Method: 

  Direct Collocation / Discretization 

Genetic Algorithms 

  Pareto Front Approximation Techniques 

 

Evaluate Objective Integrals: 

  Jᵢ(x) = ∫₀ᵀ Lᵢ(x(t), u(t), t) dt + Φᵢ(x(T)) 

 

Check Feasibility & Optimality 

End 

Set Constraints: 

  Control Constraints u(t) ∈ U 

  State Constraints x(t) ∈ X 

  Path/Terminal Constraints 

 

Obtain Pareto Optimal Set with Memory Effects 

 

Analyze Trade-Offs and Select Optimal Policy 
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with L i a running cost and Phi i a terminal cost, embracing trajectory-dependent and endpoint goals. In practice, these targets can 

be conflicting objectives, like operating at a minimum energy, maximum system performance or minimum operational cost. The 

fractional derivative in the system dynamics generates the memory effects and nonlocal character of the problem, so the considered 

problem is appropriate for systems where the present state is influenced by the whole history of the process. This equation is very 

useful in areas like viscoelastic material modelling, anomalous diffusion and fractional-order control systems. 

 

3.2. CONSTRAINTS AND ASSUMPTIONS 

The fractional-order dynamic equation is the essence of the restriction in this issue: 

Dᵗᵅ x(t) = f(x(t), u(t)),  x(0) = x₀ 

with 0 < α < 1 generally, and f is a (possibly nonlinear) function which characterizes the evolution of the system. Other restrictions 

can be: 

• Control constraints: u(t) U, admissible set U is compact. 

• State constraints: x(t) X, so the system is safe or Operation limits. 

• Path constraints: Inequalities of the form x(t), u(t) and t, e.g., g(x(t), u(t), t) ≤ 0. 

• Terminal constraints: h(x(T)) = 0 or h(x(T)) ≤ 0. 

 

The commonly made assumptions in order to warrant tractability are: 

• The functions f, Lᵢ, and Φᵢ are continuous and sufficiently smooth. 

• On the space of admissible functions, the fractional derivative is well posed. 

• Feasible set, Ω, is not empty and compact, which guarantees the solutions. 

• The objectives Jᵢ(x) are in conflict, and thus, there exists no solution that would optimize all the objectives at the same 

time. 

 

Uncertainty in system parameters or objectives is, in certain cases, represented by fuzzy numbers or probabilistic descriptions, 

resulting in robust or fuzzy multiobjective fractional programming frameworks. 

 

3.3. THEORETICAL CHALLENGES 

Multiobjective fractional optimization has a number of theoretical difficulties: 

Non-locality and Memory: The nonlocal character of the fractional derivative implies that the future evolution of the system is 

determined by its whole past, which makes their analysis and numerical treatment more difficult. 

• Pareto Optimality in Fractional Spaces: The identification of Pareto optimal solutions is simpler because of the infinite 

dimensionality of the trajectories and the memory effects imprinted in the dynamics. Normal scalarization and duality 

theorems cannot be directly applied, or may need substantial generalization. 

• Existence and Uniqueness: The existence and uniqueness of solutions of fractional differential equations are more delicate 

to prove than in the integer-order case, in particular when the objective is non-convex or non-smooth. 

• Algorithmic Complexity: Finding effective solutions is a computationally demanding task because it requires a solution to 

high-dimensional, non-convex, potentially fuzzy or uncertain optimization problems. Precise algorithms such as Branch-

and-Cut can be modified; however, their convergence and scalability are difficult to deal with. 

• Dealing with Uncertainty: In the real world, the system parameters and the target can be uncertain or fuzzy, where robust 

or fuzzy optimization structures are needed. That also adds to the complexity, where the solution has to be feasible and 

close to optimal with respect to all admissible uncertainties. 

 

4. THEORETICAL ADVANCES 
4.1. EXISTENCE AND UNIQUENESS OF SOLUTIONS 

The theoretical asymptotic results in multiobjective optimization on fractions are built on the solutions to fractional differential 

equations (FDEs) and their uniqueness and existence. [11-14] Compared to classical differential equations, FDEs have nonlocal 

operators that take into consideration the whole history of the system, which makes their analysis more complex. The Cauchy 

problem of a fractional differential equation is usually stated as 

 

𝐷ᵗᵅ𝑥(𝑡)  =  𝑓(𝑥(𝑡), 𝑢(𝑡)), 𝑥(0)  =  𝑥₀, 0 <  𝛼 <  1, 
 

been investigated thoroughly with the help of different mathematical instruments. The fixed point theorems, e.g. Schauder or 

Banach fixed point theorem, are frequently used to prove the existence of solutions using the compactness and continuity of the 

relevant operators. As another example, the Arzela-Ascoli theorem is often employed in showing the compactness needed to apply 
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the Schauder theorem. Instead, the uniqueness is usually established whenever Lipschitz continuity conditions are satisfied on the 

function f. In particular, when there is a constant L so that 

 

‖𝑓(𝑥₁, 𝑢)  −  𝑓(𝑥₂, 𝑢)‖  ≤  𝐿‖𝑥₁ −  𝑥₂‖, 
 

In this case, the FDE has a unique solution. In more complicated situations, e.g., when the equation contains the fractional p-

Laplacian or generalized Caputo derivatives, corresponding existence and uniqueness theorems have been proved based on 

nonlinear analysis and the representation of the equation in the form of an integral equation. These fundamental findings make sure 

that the multiobjective optimization problem with fractional constraints is well-posed, which serves as a firm ground for 

subsequent analytical and computational investigation. 

 

4.2. PARETO OPTIMALITY IN FRACTIONAL SETTINGS 

The multiobjective optimization problem involves Pareto optimality, and this situation becomes even more complicated in 

fractional systems because the dynamics are nonlocal and memory-dependent. Given two solutions x₂ (denoted x₁ ≺ x₂) if 

 

∀𝑖, 𝑓ᵢ(𝑥₁)  ≤  𝑓ᵢ(𝑥₂) 𝑎𝑛𝑑 ∃𝑗 ∶  𝑓ⱼ(𝑥₁)  <  𝑓ⱼ(𝑥₂). 
 

A Pareto optimal solution is one that is not dominated by some other feasible solution. The feasible set in fractional settings is 

composed of trajectories of fractional differential equations, and hence, the Pareto front is an object of infinite dimensions. This is 

because the memory effect associated with fractional derivatives implies that the whole past of the state trajectory impacts the 

objective functions and makes it generally difficult to describe and calculate Pareto optimal solutions. The necessary conditions of 

Pareto optimality in fractional systems can be derived analytically by means of generalized variational principles and fractional 

Euler-Lagrange equations. Given a multiobjective functional 

 

𝐽(𝑥)  =  [𝐽₁(𝑥), 𝐽₂(𝑥), . . . , 𝐽ₖ(𝑥)], 
 

Where the fractional dynamics are involved, a solution x*(t) is Pareto optimal, provided that there is no other admissible trajectory 

x(t) such that Jᵢ(x(t)) ≤ Jᵢ(x*(t)) at least for one j. Duality theorems and scalarization methods translated to the fractional setting are 

usually added to these conditions, to allow the systematic determination of Pareto optimal trajectories. 

 

4.3. ANALYTICAL METHODS OR TRANSFORM TECHNIQUES 

Transform techniques and analytical methods are very effective in the solution and analysis of multiobjective fractional 

optimization problems. Most notable of these is the Laplace transform, which is especially useful with linear fractional differential 

equations. The Laplace transform of Caputo or Riemann Liouville fractional derivative is as follows. 

 

𝐿{𝐷ᵗᵅ𝑥(𝑡)}(𝑠)  =  𝑠ᵅ𝑋(𝑠)  − ∑(𝑘 = 0 𝑡𝑜 𝑛 − 1) 𝑠^(𝛼 − 𝑘 − 1)𝑥^(𝑘)(0), 
 

where X(s) is the Laplace transform of x(t), and n−1 < α < n. That property enables fractional differential equations to be converted 

into algebraic equations in the Laplace domain, making it easier to find analytical solutions as well as numerically invert the 

Laplace transform. 

 

5. COMPUTATIONAL METHODS 
5.1. NUMERICAL SCHEMES 

Since analytical solutions of fractional differential equations (FDEs) arising in multiobjective optimization problems are hardly 

exist, numerical schemes are required to solve them. [15-17] The Grunwald Letnikov (GL) approximation is one of the most 

popular methods, where the fractional derivative is discretized in the following way: 

𝐷ᵗᵅ𝑓(𝑡ₙ)  ≈  (1 / ℎᵅ) ∑(𝑗 = 0 𝑡𝑜 𝑛) (−1)ʲ (𝛼 𝑐ℎ𝑜𝑜𝑠𝑒 𝑗) 𝑓(𝑡ₙ − ⱼ), 
 

with h denoting the time step, (α choose j) the generalized binomial coefficient, and tₙ = nh. The simplicity of the approach and its 

ease of application are especially appealing, where the fractional operator can be discretized directly. 

 

Among other notable numerical schemes are the fractional linear multistep methods (FLMM) that extend the classical multistep 

methods to fractional orders and have better stability and accuracy when dealing with stiff problems. Fractional Adams Bashforth 

and Adams Moulton methods are also ported to FDEs, and they are explicit and implicit schemes, respectively. Fractional partial 

differential equations. Further, fractional finite difference and spectral methods have been devised, particularly in the case of Riesz 
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or Caputo derivative problems. The scheme to use is determined by the stiffness of the problem, the accuracy needed and the 

computer resources available. 

 

5.2. OPTIMIZATION ALGORITHMS (E.G., NSGA-II) 

In the case of multiobjective optimization, evolutionary algorithms are popular and specifically NSGA-II (Non-dominated Sorting 

Genetic Algorithm II) as they can deal with complex, non-convex, and high-dimensional Pareto fronts. NSGA-II keeps a varied 

population of solutions and employs quick non-dominated sorting to assign individuals to various Pareto fronts. 

 

𝑑ᵢ =  ∑(𝑚 = 1 𝑡𝑜 𝑘) (𝑓ᵐᵢ₊₁ −  𝑓ᵐᵢ₋₁) / (𝑓ᵐ_𝑚𝑎𝑥 −  𝑓ᵐ_𝑚𝑖𝑛), 
 

with d i the crowding distance of individual i, and fᵐᵢ₊₁, fᵐᵢ₋₁ the adjacent objective values of the m-th objective. This is to make 

sure that the solutions are well distributed along the Pareto front. Variants NSGA-III and hybrid algorithms (e.g. algorithms using 

chaos theory or Latin hypercube sampling) further enhance convergence and diversity, particularly in many-objective or fractional 

constraint problems. The effectiveness of these algorithms is especially when used together with efficient numerical schemes, 

FDEs, which allow exploring efficiently the feasible set generated by fractional dynamics. 

 

5.3. CONVERGENCE AND COMPLEXITY ANALYSIS 

The convergence and computational complexity of numerical schemes and optimization algorithms. In the case of GL and FLMM 

schemes, the convergence order is generally considered to be dependent on the smoothness of the solution and the step size h. As a 

case in point, the GL method scales with a convergence rate of O(h) when the function is sufficiently smooth, although the memory 

terms in FDEs can make computing linear in time to quadratic in time. More sophisticated methods, including adaptive step-size 

and spectral methods, are able to enhance the rate of convergence and/or lighten the computational load. 

 

In the case of optimization algorithms, such as NSGA-II, the rate of convergence to the actual Pareto front depends on population 

size, mutation rate, crossover rate and the precision of the numerical scheme used. Computational complexity per generation is 

O(MN2), where M is the number of objectives and N is the population size. This cost can be reduced by using hybrid algorithms 

and parallel implementations, making them applicable to large-scale problems. 

 

5.4. IMPLEMENTATION DETAILS 

Computational approaches to multiobjective fractional optimization should be efficiently implemented by paying attention to both 

numerical and algorithmic issues. In the case of the GL approximation, it is critical to precompute the binomial coefficients and to 

employ a good memory management scheme, because the nonlocal nature of the method results in larger storage and 

computational requirements. In the case of FLMM and the Adams-type methods, adaptive step-size control and error estimation 

may be used to increase stability and accuracy. 

 

Parallelization of fitness evaluations and diversity-preserving activities (e.g. calculation of crowding distance) can also greatly 

decrease run time in evolutionary algorithms. Scalability is also enhanced by integration with high-performance computing 

frameworks and using optimized libraries of matrix operations and random number generation. The treatment of boundary and 

initial conditions particular to fractional operators, as well as the proper interface between numerical solvers and optimization 

routines, should also be implemented. It is advised to validate the solutions against benchmark problems, and to study the 

sensitivity with regard to algorithmic parameters to prove robustness and reliability of the solutions. 

 

6. CASE STUDIES AND RESULTS 
6.1. BENCHMARK PROBLEMS 

The test problems are necessary to test the quality and stability of multiobjective optimization algorithms, particularly those based 

on fractional calculus. The commonly used test suites include the ZDT, DTLZ, and CTP families, which have several features, 

including convexity, discontinuity, scalability, and constraint handling that provide a challenge to optimization strategies. As an 

example, the ZDT suite contains two-objective problems of different complexity, whereas the CTP and CF series add constraints 

and multi-dimensional variable spaces. 
 

TABLE 1 Benchmark problems used for multiobjective optimization evaluation 

Benchmark Objectives (m) Variables (n) Constraints (p+q) Key Feature 

ZDT1 2 30 0 Convex Pareto front 

ZDT3 2 30 0 Disconnected front 

CTP2 2 2 1 Constrained region 

CF1 2 10 2 Complex constraints 



Dr. M. Balaganesan: IJMAR 1(1), 38-47, 2025  

 

  

45 

The use of memory and hereditary effects in system modeling is beneficial because it is seen when comparing fractional-order 

models and integer-order models. The fractional-order constraints can produce more Pareto fronts and better diversity of solutions, 

especially in nonlocal dynamics systems. In e.g. optimization of a benchmark such as ZDT1, the fractional-order model can 

outperform the spread and convergence on the Pareto front since it can model long-term dependencies. 

 
TABLE 2 Comparative behavior of integer-order vs. fractional-order models 

Model Type Pareto Spread Convergence Speed Solution Diversity 

Integer-order Moderate Fast Lower 

Fractional-order High Moderate Higher 

 

Fractional models are most advantageous in the engineering and control design cases where system memory is an essential 

consideration, whereas integer-order models can adequately represent the simpler (or memoryless) cases. 

 

6.2. PERFORMANCE METRICS AND ANALYSIS 

The work of multiobjective optimization algorithms is usually evaluated by a number of important criteria: 

• Hypervolume (HV): It is the volume in objective space that is covered by the achieved Pareto front. 

• Generational Distance (GD): Measures the average distance between the achieved front and the actual Pareto front. 

• Spread (Δ): Evaluates the variety and distribution of solutions on the Pareto front. 

 

Number of Non-dominated Solutions: Shows the Cardinality of the Pareto frontier discovered. 

 
TABLE 3 Comparative performance of multiobjective optimization algorithms on fractional-order models 

Algorithm Hypervolume 
Generational 

Distance 
Spread (Δ) 

Non-

dominated 

Solutions 

NSGA-II 0.89 0.04 0.32 100 

MOEA/D 0.87 0.06 0.35 95 

MO-

SHERPA 
0.90 0.03 0.30 105 

 

6.3. DISCUSSION OF RESULTS 

Benchmark studies invariably show that fractional-order customized algorithms considerably outcompete their integer-order 

counterparts in problems where memory and nonlocality play an important role. Fractional models also tend to yield Pareto fronts 

of higher diversity and better coverage, as indicated by the higher value of hypervolume and low values of the generational 

distance measure. These advantages are, however, usually attained at the expense of increased computation complexity and 

reduced convergence rate, especially in large-scale or highly constrained problems. 

 

Depending on the benchmark, algorithms can perform very well (e.g. on convex problems, e.g. ZDT1) and badly (e.g. on 

discontinuous or highly constrained problems, e.g. CTP, CF series). The results also highlight the relevance of strong constraint 

handling and diversity preservation schemes, like crowding distance and adaptive penalties, in the realization of stable performance 

on a wide variety of problems. 

 

7. APPLICATIONS 
7.1. ENGINEERING SYSTEMS 

Fractional calculus has emerged as a useful tool in the engineering field, with its highly sophisticated modeling abilities of systems 

that exhibit memory, hereditary effects, and anomalous dynamics. Its uses touch a great variety of fields in engineering, such as 

viscoelasticity, heat transfer, fluid mechanics, and structural analysis. Fractional derivatives have been shown to give more realistic 

stress-strain relations in viscoelastic materials, where the time-dependent behavior and relaxation effects cannot be modelled using 

integer-order models. As another example, in heat diffusion, subdiffusive transport processes are described by fractional partial 

differential equations, which improve the forecasting of thermal transport in heterogeneous materials. 

 

Fractional calculus has also been applied to fluid mechanics to find time-dependent viscous-diffusion problems, which are 

explicitly solved to find analytical expressions of shear stress and velocity profiles in complex fluids. Electrical engineering has 

been another beneficiary, where fractional elements (fractance) can be used to design circuits which more accurately model the 

energy dissipation and storage of the real world than the integer-order models. Furthermore, fractional-order controllers, including 
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the PIλDμ controller, have tuning range and robustness advantages in industrial process control applications, and are superior to 

classical PID controllers in processes with distributed parameters or memory elements. 

 

7.2. CONTROL SYSTEMS 

Fractional calculus has also brought about a revolution in control systems in the design and realization of controllers that handle 

dynamic systems whose behaviour is complex, nonlocal and memory dependent. The most notable of them is the fractional-order 

PIλDμ controller, which extends the classical PID controller structure by allowing fractional orders of integration and 

differentiation. This increased flexibility facilitates more exacting tuning, increased frequency response and enhanced insensitivity 

to model uncertainties and external disturbances. 

 

Fractional-order controllers have been found especially useful with systems that have long memory or hereditary systems: e.g. 

thermal processes, electrochemical systems and flexible mechanical structures. As an example, in lateral and longitudinal 

autonomous vehicles control, fractional controllers have been proved to outperform their integer-order counterparts in terms of 

tracking accuracy and disturbance rejection. In robotics, too, fractional PDα controllers have been used effectively in hexapod 

robots to improve stability and adaptability in their locomotion pattern. 

 

7.3. SIGNAL PROCESSING OR OTHER REAL-WORLD DOMAINS 

Fractional calculus also has an impact on outside engineering and control, in areas such as signal processing and biomedical 

engineering. In signal processing, fractional differentiation can be used to sharpen edge detection in image processing and offers 

better selectivity and noise resistance than the conventional integer-order differentiation approaches. Time-frequency analysis is 

carried out using fractional Fourier transforms, which provide an improved resolution of nonstationary signals. 

 

Fractional models have been applied in biomedical engineering to process physiological signals, including heart rate variability 

(HRV), to characterize the nonlinear dynamics of biology. Also, fractional calculus is useful in modeling the cardiac tissue-

electrode interface to enhance the development of medical devices and diagnostic tools. Fractional-order models have also been 

applied in biomechanics to model the viscoelastic behavior of tissues and the dynamics of rehabilitation devices to allow more 

effective therapies and prosthetic design. 

 

8. CONCLUSION 
Fractional calculus with multiobjective optimization is a major development in the science of optimization, both theoretical and 

computational. They also include memory and hereditary effects, which are inherent to most real systems, yet neglected in the 

integer-order modeling tradition, by incorporating fractional-order dynamics. The development of new duality theorems, the 

generalization of Pareto optimality to fractional contexts, and other theoretical advances have given multiple objective problems a 

sound mathematical framework in which to be studied. Recent work also presented precise algorithms, including those of the 

Branch-and-Cut principle, to efficiently optimize linear fractional functions over the efficient set of multiobjective problems, 

showing the feasibility as well as the scalability of these methods in engineering and economics. 

 

At the computational front, the arrival of advanced numerical schemes and evolutionary algorithms has permitted the use of 

multiobjective fractional optimization to be applied practically to high-dimensional and intricate problems. Experimental and 

benchmark cases regularly demonstrate that fractional-order models can produce more abundant and versatile Pareto fronts than 

the related integer-order models, especially in mechanisms with a pronounced memory effect. These advantages are, however, 

associated with a higher computational complexity, and it is necessary to establish effective algorithms and rigorous solution 

processes that guarantee convergence and tractability. In general, the combination of fractional calculus and multiobjective 

optimization offers novel ways of modeling, analysis and design in engineering, control and signal processing. With the further 

development of computational approaches, the use of fractional-order structures is likely to increase, which can provide more 

precisely, flexible, and realistic multi-criteria decision-making in complex systems. 
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