

Original Article

Decentralized Intelligence: Designing AI-Enabled Governance for the 21st Century

DR. PITSHOU MOLEKA

Managing African Research Network (MARN), Kinshasa, Democratic Republic of the Congo.

ABSTRACT: This paper presents a novel conceptual framework for public governance termed Decentralized Intelligence Governance (DIG), which reconceptualizes the state as an adaptive, intelligence-driven system. In DIG, authority, institutional knowledge, and administrative control are redistributed across artificial intelligence (AI) systems, blockchain networks, and participatory data infrastructures, enabling real-time, transparent, and adaptive decision-making. Traditional Weberian bureaucracies, designed for industrial-era predictability, are increasingly incapable of managing contemporary complexity characterized by rapid technological change, polycentric societal demands, and transboundary crises. Drawing on sociotechnical systems theory, complexity governance, and African digital transformation literature, this study argues that DIG offers a structural solution to bureaucratic fragility, particularly in emerging African economies. The paper outlines the theoretical underpinnings, structural design, and potential applications of DIG while addressing the ethical, social, and infrastructural considerations critical for implementation. By integrating AI, blockchain, and distributed intelligence within public administration, DIG represents a paradigm shift that moves governance from hierarchical control toward algorithmic networks capable of dynamic adaptation and participatory legitimacy.

KEYWORDS: Decentralized governance, Artificial intelligence, Blockchain, Public administration, Complexity theory, Africa, Digital state, Sociotechnical systems.

1. INTRODUCTION

Governments around the world are confronting an era of unprecedented complexity, driven by technological innovation, global interconnectivity, and rapidly evolving societal expectations (Moleka, 2024a). Traditional bureaucracies, which were originally conceptualized during the industrial era to manage predictable workflows through hierarchical control, standardized procedures, and top-down authority, are increasingly inadequate for modern governance tasks (Weber, 1947; Kettl, 2016). These bureaucratic architectures were designed to maintain order, enforce regulations, and process routine administrative tasks in relatively stable social and economic environments. However, in contemporary societies, governance challenges are inherently complex, multidimensional, and interdependent. Issues such as climate change, pandemics, cybersecurity threats, digital financial systems, and transnational trade networks require rapid, adaptive, and information-intensive responses that exceed the cognitive and operational capacity of conventional administrative hierarchies (Moleka, 2024b). This fundamental mismatch has prompted scholars and practitioners alike to explore new institutional designs that leverage emerging technologies to enhance governance effectiveness, transparency, and resilience.

Artificial intelligence, as a transformative technology, offers profound opportunities to restructure the epistemic and operational foundations of the state. Unlike traditional bureaucracies that rely on human decision-makers to aggregate, interpret, and act upon information, AI systems can process vast quantities of data in real time, identify patterns, generate predictive insights, and propose optimized interventions across multiple domains simultaneously (Floridi & Cowls, 2019; Brynjolfsson & McAfee, 2014). When integrated with distributed ledger technologies such as blockchain, these systems can create secure, immutable, and auditable records that reduce discretionary power, enhance trust, and provide transparency in administrative processes (Atzori, 2017; Chen & Bellavitis, 2020). Collectively, AI and blockchain technologies enable a decentralized intelligence model, in which decision-making authority is distributed across computational nodes, public participants, and algorithmically mediated networks, rather than concentrated within a central bureaucratic apparatus.

The relevance of this model is particularly pronounced in African emerging economies, where state institutions often face structural challenges rooted in colonial legacies and post-independence institutional fragility (Englebert, 2000; Ndemos & Weiss, 2017). Many African governments operate within administrative frameworks originally designed for resource extraction and political control rather than developmental responsiveness. These inherited structures limit bureaucratic capacity, create opportunities for corruption, and slow policy implementation. Paradoxically, the absence of deeply entrenched institutional practices also provides a unique opportunity for leapfrogging into digitally distributed governance systems. In such contexts, African states may adopt cutting-edge AI and blockchain infrastructures without being constrained by incremental modernization of outdated bureaucracies. This paper, therefore, proposes Decentralized Intelligence Governance (DIG) as a

theoretical model that leverages both technological capabilities and structural opportunity to redesign the governance architecture for the twenty-first century.

2. PROBLEM BACKGROUND

The core problem motivating this research is the structural incompatibility between traditional bureaucratic governance and the complex, information-intensive demands of contemporary society. Weberian bureaucracies assume a linear flow of knowledge, with information transmitted upward from operational levels to decision-makers, who then issue commands downward to subordinates (Weber, 1947). While this structure was effective in predictable industrial-era contexts, it becomes a liability under conditions of high interconnectivity, rapid information exchange, and multi-actor policy environments. Complex public policy issues, such as managing digital financial systems, coordinating cross-border environmental policies, or regulating AI-driven industries, operate within dynamic networks that cannot be centrally predicted or controlled using hierarchical decision-making. Administrative hierarchies, even when well-resourced, are prone to slow response times, siloed information processing, and a lack of adaptability, often resulting in inefficient or ineffective governance outcomes (Andrews, 2013; Kettl, 2016).

Furthermore, conventional bureaucracies are structurally vulnerable to corruption, patronage networks, and information asymmetries. The reliance on human gatekeepers, paper-based procedures, and discretionary authority provides space for rent-seeking behavior and erodes public trust. These structural limitations are compounded in many African states, where post-colonial institutional frameworks often lack the procedural stability and professionalization found in mature bureaucracies (Englebert, 2000). While incremental reforms can improve efficiency within such systems, they are insufficient to address the scale and pace of contemporary policy challenges. Complexity theorists argue that modern governance requires distributed intelligence, in which decision-making is networked, adaptive, and responsive to emergent signals within social, economic, and technological ecosystems (Arthur, 2021).

Decentralized Intelligence Governance responds to these challenges by restructuring the state's epistemology. Instead of attempting to optimize traditional bureaucratic procedures, DIG envisions the state as a distributed intelligence network, where AI nodes, blockchain-mediated verification processes, and citizen participation converge to facilitate real-time, transparent, and adaptive decision-making. This approach reconceptualizes governance as a learning system rather than a command hierarchy, enabling dynamic responsiveness, minimizing opportunities for discretionary corruption, and embedding accountability within technological infrastructures. By addressing the structural limitations of legacy bureaucracies, DIG provides a conceptual solution to one of the most pressing challenges in modern public administration: how to govern effectively in an era of exponential information growth and societal complexity.

3. RESEARCH PURPOSE AND SCOPE

The primary objective of this study is to conceptually articulate Decentralized Intelligence Governance as a viable governance paradigm. Unlike empirical studies that measure the effectiveness of policy interventions, this paper develops a theoretical framework that integrates insights from multiple disciplines, including AI governance, complexity theory, sociotechnical systems, and African digital innovation. The research seeks to define the institutional characteristics of DIG, elucidate its operational logic, and identify the enabling conditions necessary for implementation. By doing so, it provides a foundational framework for subsequent research, computational modeling, and practical experimentation in AI-enabled governance systems.

The scope of this study emphasizes conceptual synthesis rather than measurement. It draws on examples from African emerging economies to illustrate the potential of DIG, particularly in contexts where legacy bureaucratic structures are weak or absent. These examples are not intended as empirical proof but as illustrative evidence of structural opportunity, demonstrating how states can bypass incremental reforms and adopt advanced governance architectures directly. By focusing on African states, the paper highlights the potential for institutional leapfrogging, in which technological capabilities compensate for structural weaknesses, enabling innovation in public administration that may be more difficult to achieve in historically entrenched bureaucratic systems. Ultimately, the paper situates DIG within broader debates on governance transformation, digital-state design, and the ethical, social, and practical implications of AI-enabled decision-making.

4. LITERATURE CONTEXT

The literature on digital governance and technological transformation in public administration provides several relevant insights for understanding the potential of DIG. Early studies on digital government emphasized the role of information technologies in streamlining administrative workflows, reducing transaction costs, and enhancing interdepartmental coordination (Fountain, 2001). These analyses demonstrated that technology could dissolve procedural bottlenecks and improve service delivery, yet most remained focused on incremental optimization within existing bureaucratic frameworks rather than reconceptualizing the state itself.

The theory of digital-era governance proposed by Dunleavy et al. (2006) anticipated the rise of networked administrative systems, in which data-driven decision-making could shift authority away from rigid hierarchies toward interlinked, multi-

level governance networks. While prescient, this framework did not fully conceptualize governance intelligence as algorithmically distributed or integrate the potential of blockchain-mediated trust systems. Research on blockchain governance highlights the ability of distributed ledger technologies to institutionalize trust by removing discretionary administrative intermediaries, creating verifiable and immutable records, and enabling peer-to-peer verification (Atzori, 2017; Chen & Bellavitis, 2020). However, these studies often remain isolated from the literature on AI-enabled decision-making, leaving a theoretical gap regarding the integration of distributed intelligence within governance architectures.

AI governance research has examined the potential of algorithmic systems to enhance decision-making, automate routine tasks, and support predictive policy interventions (Sun & Medaglia, 2019; Wirtz et al., 2023). Central to these analyses are concerns regarding transparency, accountability, and algorithmic legitimacy (Doshi-Velez & Kim, 2017). Yet, much of this work treats AI as a supplementary tool rather than as the core organizational principle of governance. Finally, research on African digital innovation provides compelling evidence of the continent's capacity for institutional leapfrogging. Mobile money platforms such as M-Pesa in Kenya demonstrate that populations can bypass legacy infrastructures to adopt technologically advanced systems at scale (Donovan, 2012). Similarly, blockchain-based land registries in Ghana and AI-driven agricultural supply chains in Kenya illustrate the feasibility of distributed, digital governance infrastructures in contexts where traditional bureaucracies are limited (Makinde, 2023).

Taken together, these literature streams indicate that while technological capabilities, decentralized governance models, and AI decision systems have been studied individually, there is a critical gap in integrative theory. DIG addresses this gap by synthesizing AI, blockchain, and decentralized governance into a unified conceptual model suitable for contemporary public administration.

5. THEORETICAL FRAMEWORK

Decentralized Intelligence Governance (DIG) rests on an interdisciplinary theoretical foundation that integrates insights from sociotechnical systems theory, complexity governance, and algorithmic transparency scholarship. Sociotechnical systems theory, originally articulated by Trist and Emery (1973/2015), posits that organizational outcomes emerge not from human agency or technology alone, but from the interaction of both within specific institutional contexts. DIG applies this principle by conceptualizing governance as a coordinated ecosystem in which human decision-makers, AI systems, and technological infrastructures interact symbiotically to produce adaptive, responsive, and context-sensitive policy outcomes. Unlike traditional bureaucracies that separate human judgment from administrative processes, DIG embeds computational intelligence within the operational fabric of the state, thereby enabling real-time policy experimentation, continuous feedback loops, and dynamic adjustment of governance strategies in response to evolving societal conditions. This theoretical lens highlights the importance of understanding governance not as a set of static procedures but as a living, evolving system, capable of self-organization and adaptive learning.

Complexity governance theory further underscores the relevance of decentralized intelligence for modern public administration. Complexity theorists argue that social systems are inherently non-linear, adaptive, and networked, operating under conditions where outcomes cannot be precisely predicted or centrally controlled (Arthur, 2021). Public policy issues often arise from interconnected, polycentric networks in which feedback loops, emergent behavior, and interdependencies dominate decision dynamics. DIG aligns with this perspective by replacing hierarchical decision chains with distributed intelligence networks in which information, computation, and authority flow horizontally and dynamically across nodes. By embedding AI systems capable of data aggregation, pattern recognition, and predictive analytics, DIG enables governance processes to respond adaptively to emergent social signals, market fluctuations, environmental changes, and public sentiment, thereby addressing the cognitive and operational limits of traditional bureaucracies.

Algorithmic transparency theory provides an additional pillar for the DIG framework. Central to the legitimacy of AI-enabled governance is the ability of algorithmic systems to be auditable, explainable, and accountable, ensuring that policy decisions derived from computational processes are not opaque or arbitrary (Doshi-Velez & Kim, 2017; Rahwan, 2018). In contexts where public trust is fragile, particularly in many African states, ensuring that algorithms operate within a transparent and ethically accountable framework is critical. DIG therefore incorporates mechanisms for algorithmic oversight, participatory verification, and distributed auditing to ensure that computational governance does not exacerbate inequities or generate opaque decision monopolies. By integrating sociotechnical systems, complexity governance, and algorithmic transparency, the theoretical framework of DIG offers a cohesive rationale for reconceptualizing the state as a distributed, intelligence-driven system capable of dynamic adaptation, ethical accountability, and participatory legitimacy.

6. AFRICAN LEAPFROGGING POTENTIAL

Africa presents a unique opportunity for pioneering decentralized intelligence governance, precisely because many states are structurally unconstrained by entrenched bureaucratic legacies. In contrast to Western contexts, where governance systems are often deeply institutionalized, African states frequently confront institutional fragility, under-resourced administrative bodies, and informalized regulatory environments. While these conditions create governance challenges, they also produce

institutional flexibility, allowing states to experiment with novel technological solutions without being locked into legacy practices. Mobile banking adoption, particularly the rapid proliferation of platforms such as M-Pesa in Kenya, exemplifies this leapfrogging potential. Millions of users bypassed traditional banking infrastructure, adopting digital financial services at a mass scale, demonstrating that African populations can readily integrate technology into socio-economic practices when infrastructure and incentives align (Donovan, 2012).

Similarly, blockchain-based initiatives, such as land registries in Ghana or decentralized agricultural supply chains in Kenya, indicate that digital-first institutional design is not only feasible but can achieve substantive improvements in transparency, efficiency, and citizen trust (Makinde, 2023). Unlike Western bureaucracies, which often resist big institutional change due to entrenched procedures, regulatory inertia, and political inertia, African governments can adopt computational governance systems from inception, embedding AI-driven decision-making, participatory data networks, and distributed audit mechanisms into their core institutional architecture. Demographic factors also reinforce this potential: Africa has one of the youngest populations in the world, combined with rapidly increasing digital literacy, widespread mobile connectivity, and a growing culture of civic engagement. These conditions facilitate the adoption of decentralized intelligence infrastructures, enabling African states to leapfrog industrial-era bureaucracies and directly embrace algorithmically mediated governance.

Importantly, this leapfrogging does not merely involve technological substitution; it entails a paradigm shift in institutional epistemology, redefining how states perceive authority, knowledge, and legitimacy. In a DIG-enabled state, policy-making authority is distributed across computational nodes, citizen-generated data streams, and participatory platforms, diminishing the centrality of hierarchical decision-making. Public trust is embedded not in political rhetoric or elite decision-making, but in algorithmically verifiable processes that citizens can observe, engage with, and influence. African governments, by adopting such models, could emerge as global pioneers in distributed, AI-driven governance, demonstrating pathways for digital institutional transformation that are difficult to replicate in contexts constrained by legacy bureaucracies.

7. DISCUSSION

The adoption of Decentralized Intelligence Governance entails a profound reconceptualization of the state, moving from a hierarchical, command-driven model toward a distributed, adaptive intelligence network. In such a system, decision-making emerges not from human discretion alone, but from a complex interplay of real-time data analytics, AI-driven predictive modeling, and participatory citizen inputs. Public services become automated, personalized, and context-sensitive, with AI systems optimizing resource allocation, regulatory enforcement, and policy implementation in ways that traditional bureaucracies cannot match. This model also embeds algorithmic transparency and auditability at the core of governance, ensuring that citizens can trace decisions to data inputs and computational logic, thereby reinforcing accountability and trust.

The implications of this transformation are both operational and ontological. Operationally, DIG allows governments to respond to crises, market shifts, and societal demands at speeds and scales previously unattainable. Policies are no longer static; they are continuously refined through feedback loops, real-time monitoring, and predictive modeling. Ontologically, DIG challenges conventional assumptions about the locus of state authority, the nature of bureaucratic expertise, and the role of citizens in governance. Authority is no longer concentrated in offices, ministries, or elite decision-makers; it is embedded in computational networks, distributed verification protocols, and participatory mechanisms. Citizens become co-producers of governance, providing data, verifying outputs, and shaping priorities through interactive platforms. This shift has profound ethical, social, and political consequences, requiring careful consideration of issues such as algorithmic bias, digital equity, cybersecurity, and citizen inclusion.

Furthermore, the discussion must acknowledge the transformational potential of DIG beyond Africa, where even mature bureaucracies can benefit from distributed intelligence systems. While entrenched institutions may resist full adoption, hybrid models integrating AI-enhanced decision-making, blockchain verification, and participatory data collection can enhance transparency, reduce administrative friction, and improve service delivery. Thus, DIG represents not only a theoretical model for emerging economies but also a universal framework for reimagining governance in an era defined by complexity, interconnectivity, and rapid technological evolution.

8. LIMITATIONS

This study is primarily conceptual and does not provide empirical evidence regarding the performance, efficiency, or societal impact of Decentralized Intelligence Governance. Consequently, the arguments presented rely on theoretical coherence, illustrative cases, and extrapolation from technological trends rather than measured outcomes. Implementation of DIG raises significant ethical and operational challenges. AI-driven decision-making can reproduce societal biases if algorithms are trained on skewed datasets, and the complexity of distributed systems may create new vulnerabilities in accountability and control. Blockchain infrastructures, while enhancing transparency, require digital literacy, infrastructure, and energy-intensive computation, which may limit feasibility in resource-constrained contexts.

In African contexts, infrastructural inequalities such as uneven internet penetration, limited access to mobile technologies, and disparities in data literacy pose additional constraints. DIG also raises questions about legal and constitutional frameworks: the redistribution of authority to algorithmic systems may conflict with existing governance norms, administrative law, and citizen rights. Finally, the sociopolitical implications of reducing human discretion in governance are complex, potentially undermining democratic oversight or creating tensions between algorithmic authority and elected institutions. While these limitations do not negate the conceptual promise of DIG, they underscore the need for careful, context-sensitive experimentation, robust oversight mechanisms, and ongoing ethical evaluation during implementation.

9. FUTURE RESEARCH

Future research on DIG should pursue several complementary avenues. First, it is necessary to operationalize the theoretical constructs introduced in this paper, defining measurable governance indicators, decision-making efficiency metrics, and citizen engagement parameters. Computational modeling and simulation of distributed AI governance networks could provide critical insights into system behavior under varying conditions, including stress testing against crises, policy shocks, and informational asymmetries. Empirical research should examine how citizens interact with AI-mediated decision systems, including cultural, ethical, and behavioral factors that influence participation and trust. Comparative studies between African and Western governance contexts could reveal differences in performance, adaptability, and social acceptance, providing valuable guidance for context-specific DIG design.

Legal and institutional research is also critical. The integration of algorithmic authority into public administration requires careful evaluation of constitutional norms, regulatory frameworks, and accountability mechanisms. Ethical research should explore methods to mitigate algorithmic bias, ensure equitable access to digital governance platforms, and balance computational efficiency with human oversight. Interdisciplinary collaboration between public administration scholars, AI engineers, complexity theorists, and African governance specialists will be essential to refine DIG from conceptual theory to practical application. Over time, DIG could become a foundation for global experiments in AI-enabled governance, informing policy debates, institutional reforms, and technological deployments in diverse contexts.

10. CONCLUSION

Decentralized Intelligence Governance constitutes a novel and viable institutional model for twenty-first-century public administration. By integrating artificial intelligence, blockchain infrastructures, and decentralized participatory mechanisms, DIG reconceptualizes the state as an adaptive, intelligence-driven system capable of responding to complexity, uncertainty, and polycentric societal demands. Unlike incremental bureaucratic reforms, DIG represents a fundamental redesign of governance epistemology, authority, and operational structure, moving away from hierarchical command toward algorithmically mediated networks.

African states, in particular, possess structural opportunities to pioneer DIG, leveraging institutional flexibility, demographic advantages, and digital literacy to leapfrog industrial-era bureaucracies. The combination of AI-driven decision-making, blockchain-mediated transparency, and participatory citizen platforms offers a path to more efficient, accountable, and adaptive governance, while simultaneously embedding legitimacy and trust within technological infrastructures. While significant ethical, infrastructural, and regulatory challenges remain, DIG provides a conceptual roadmap for rethinking governance in an era of digital transformation, global interconnectivity, and rapidly evolving societal expectations. By situating decision-making authority within distributed intelligence networks, the state can evolve into a learning system, capable of dynamically adjusting to societal needs, technological shifts, and global challenges, thereby redefining what it means to govern in the twenty-first century.

REFERENCES

- [1] Rediet Abebe, et al., "Roles for computing in social change," *Proceedings of the Conference on Fairness, Accountability, and Transparency*, 1-10, ACM, pp. 252-260, 27 January 2020.
- [2] D. Acemoglu, and J. Robinson, "Why Nations Fail: The Origins of Power, Prosperity, and Poverty," Crown Publishing Group-A Division of Random House, Inc., New York, 2012.
- [3] W Brian Arthur, Complexity and the economy, New York, Ny: Oxford University Press, 2015.
- [4] Atzori, M. "Blockchain Technology and Decentralized Governance: Is the State Still Necessary?" *Journal of Governance and Regulation*, vol. 6, no. 1, pp. 45-62, March 2017.
- [5] E. Brynjolfsson, and A. McAfee, "The second machine age: Work, progress, and prosperity in a time of brilliant technologies," W. W. Norton & Company, 2014.
- [6] A. Bhardwaj, "Blockchain, decentralisation and new governance architectures," *Journal of Public Policy*, vol. 42, no. 3, pp. 451-472, 2022.
- [7] M. Castells, The Rise of the Network Society: The Information Age: Economy, Society, and Culture Volume I. Wiley, 2010.
- [8] Y. Chen, and C. Bellavitis, "Blockchain disruption and decentralized business models" *Journal of Business Venturing*, vol. 35, no. 4, pp. 1-18, 2020.

[9] K. Crawford, “*Atlas of AI: Power, politics, and the planetary costs of artificial intelligence*,” Yale University Press, vol. 74, no. 1, pp. 61-62, 2022.

[10] F. Doshi-Velez, and B. Kim, “Towards a rigorous science of interpretable machine learning,” *arXiv preprint arXiv:1702.08608*.

[11] K. Donovan, “Mobile money for financial inclusion,” *Information Technologies & International Development*, vol. 8, no. 1, pp. 1-16, 2012.

[12] P. Dunleavy et al., “*Digital era governance: IT corporations, the state, and e-government*,” Oxford University Press, pp. 1-289, 2006.

[13] Jane E. Fountain, “*Building the virtual state: Information technology and institutional change*,” Brookings Institution Press, 2001.

[14] U. Gasser, and V. Almeida, “A layered model for AI governance,” *IEEE Internet Computing*, vol. 21, no. 6, pp. 58-62, 2017.

[15] Yual Noah Harari, “*21 lessons for the 21st century*,” Jonathan Cape, pp, 1-318, 2018.

[16] E. Horvitz, “AI for societal benefit: Governance challenges,” *Communications of the ACM*, vol. 65, no. 9, 26-34, 2022.

[17] Donald F. Kettl, “*The transformation of governance: Public administration for twenty-first century America*,” 2nd ed., Johns Hopkins University Press, 2016.

[18] O. Makinde, “Artificial Intelligence and Public Sector Reform in Africa,” *African Affairs*, vol. 122, no. 488, pp. 415–439, 2023.

[19] Mariana Mazzucato, “*Mission economy: A moonshot guide to changing capitalism*,” Penguin, pp. 1-272, 2021.

[20] Pitshou Moleka, “Innovationology: A Groundbreaking Transdisciplinary Framework for Sustainable and Equitable Development in Africa,” *International Journal of Social Sciences and Management Review*, vol. 7, no. 5, pp. 178-193, 2024.

[21] Pitshou Moleka, “The Moleka Grid: An Ontological Diagnostic Framework for Systemic Transformation,” Available at SSRN 5267882, pp. 1-10, 2025.

[22] Bitange Ndemo, and Tim Weiss, “Digital Kenya: An entrepreneurial revolution in the making,” Palgrave Macmillan, 2017.

[23] E. Ostrom, “*Governing the commons: The evolution of institutions for collective action*,” Cambridge: Cambridge University Press, 1990.

[24] I. Rahwan, “Society-in-the-loop: Programming the algorithmic social contract,” *Ethics and Information Technology*, vol. 20, no. 1, pp. 5-14, 2018.

[25] Tara Qian Sun, and Rony Medaglia, “Mapping the challenges of Artificial Intelligence in the public sector: Evidence from public healthcare,” *Government Information Quarterly*, vol. 36, no. 2, pp. 368-383, 2019.

[26] R. Susskind, D. Susskind, “*The Future of the Professions: How Technology will Transform the Work of Human Experts*,” Oxford University Press, 2015.

[27] E. L. Trist, and F.E. Emery, The Sociotechnical Perspective: The Evolution of Sociotechnical Theory (rev. ed.). Routledge, (Original work published 1973), 2015.

[28] UNESCO “*Recommendation on the ethics of artificial intelligence*,” UNESCO Publishing. 2021.

[29] P. Wang, “*On defining artificial intelligence*,” Springer, no. 2, pp. 1-37, 2019.

[30] D. M. West, “*The future of work: Robots, AI, and automation*,” Brookings Institution Press, 2018.

[31] Bernd W. Wirtz, Jan C. Weyerer, and Carolin Geyer, “Artificial intelligence and the public sector: Applications, challenges, opportunities,” *Government Information Quarterly*, vol. 40, no. 1, pp. 101-125, 2023.

[32] Shoshana Zuboff, “*The age of surveillance capitalism: The fight for a human future at the new frontier of power*,” PublicAffairs, pp. 1-704, 2019.

.