International Journal of Agriculture and Environmental Sciences ISSN: XXXX-XXXX | Volume 1 Issue 1, 19-28, July-September 2025 DOI: https://doi.org/10.64137/XXXXXXXX/IJAES-V111P103

Received: 01/08/2025 Revised: 14/08/2025 Accepted: 03/09/2025 Published: 19/09/2025

Original Article

Application of Machine Learning Algorithms for Predictive Modeling of Climate-Smart Agriculture

R. SHAKTHI VIKRAM

Independent Researcher, India.

ABSTRACT: Machine learning algorithms are key to advancing CSA since they allow predictive modeling to help use resources better, strengthen farm defenses and improve crop yields. Researchers have found that AdaBoost Regressor and Random Forest can accurately predict yields in farming (MAE: 0.22, R²: 0.89). This is based on analyzing both historical and real-time weather, soil data and farming practices. Gradient Boosting helped predict how farmers will use CSA by integrating various important factors like their background, farming methods and climate, supporting suitable interventions. Machine learning approaches such as ViT-B16 and ResNet-50 enhance predictions by using images to watch over crop health, reaching F1-scores of up to 99.54%. Using IoT devices and remote sensing results in more accurate data, so there are better ways to irrigate and get advanced notice of serious weather events. Even so, difficulties arise, for example, inconsistent quality of data, scaling issues with models and the requirement for colleagues from many disciplines to tackle the problems related to society and technology. Because of ML methods, these agricultural techniques assist with both efficient resource use and adaptation to climate challenges.

KEYWORDS: Machine learning, Climate-smart agriculture, Predictive modeling, Crop yield prediction, Precision agriculture, Ensemble learning, IoT integration, Sustainability, Resource optimization, Climate resilience.

1. INTRODUCTION

1.1. CLIMATE CHANGE AND THE NEED FOR CLIMATE-SMART AGRICULTURE

Climate change is considered one of the biggest problems for global agriculture today, affecting food security, income for farmers and the environment. Temperature changes, different precipitation levels and more occurrences of severe weather events affect agriculture the most. [1-4] At the same time, cars produce many greenhouse gases, which contribute to climate change and damage the environment. For this reason, Climate-Smart Agriculture (CSA) has appeared as a method that works in several areas: boosting agricultural productivity, helping against climate effects and cutting harmful emissions. CSA mixes adaptive farming, new technologies and favorable policies to guarantee that food systems survive in the long term.

1.2. THE ROLE OF TECHNOLOGY AND MACHINE LEARNING IN CSA

The role of data in farming is being greatly increased by the latest technological advancements. IoT, AI and biotechnology are coming together to allow farmers to check the environment, automate their resources and act on better information. Equipment related to IoT, such as soil moisture sensors, helps farmers water their crops precisely, which minimizes water wastage and the release of unused nutrients. Using ML algorithms, AI goes through huge sets of weather forecasts and other information to help determine the timing of planting, how to manage pests and which kinds of crops to use.

CSA is now benefiting a lot from using machine learning. Examining many kinds of data allows ML models to predict crop harvests, control water resources, diagnose health issues in plants and warn about upcoming weather extremes. Information from big data leads farmers to the proper use of resources, helps them prevent risks and assists them in handling climate change. Using remote sensing with IoT helps make predictions more precise and detailed, which is important for precision agriculture.

1.3. OPPORTUNITIES AND CHALLENGES

The use of machine learning in climate-smart agriculture opens up new ways to increase yield, stand up to changes and protect the environment. These systems make sure to use water, fertilizers and pesticides precisely, which in turn helps reduce the negative effects on the environment. With these systems, farmers are made aware of drought, flood or pest risks early, which helps them respond efficiently. There are still problems encountered. Data challenges and difficulties with access, the complexity of models and the need for region-based changes are obstacles to many using weather prediction models. Providing equal technological opportunities, mainly to smallholder farmers and encouraging different disciplines to interact are essential for reaching ML's value

in CSA. Tackling these challenges will mean that policymakers, researchers and technology providers must join forces to develop solutions for the future of agriculture that are scalable, helpful to all and environmentally friendly.

2. RELATED WORK / LITERATURE REVIEW

2.1. REVIEW OF ML APPLICATIONS IN AGRICULTURE

Agricultural practices have improved through machine learning (ML), which makes it possible for farmers to guide decisions based on data. Using data about weather, soil and crop conditions from the past and present, predictive analytics from ML ($R^2 = 0.89$, MAE = 0.22) predicts yields accurately with the help of ensemble methods like Random Forest and AdaBoost Regressor. [5-8] By applying CNNs, algorithms detect diseases in crops, assess if the land is suitable and check crop health with an accuracy of up to 99.54% in early pest detection through satellite and drone photos. LSTM networks and other deep learning technologies help to find time-based trends in climate information, which allows agriculture experts to plan more efficient irrigation methods.

Precision agriculture is used in ML to help farms use fewer resources. Regression models ensure that irrigation is done properly and fertilizer is applied as needed, which lowers water usage by 30% but maintains the harvest. Clustering groups together crops that need similar environmental conditions, making it easier to control soil health and pests. In addition, Bayesian models use information on social and economic aspects to forecast which climate-smart techniques will be adopted by farmers, which is useful for policy creation. These advancements do not solve all issues, since there are still uncertainties in analyzing data types, letting people understand models and scaling up in agriculture.

2.2. CLIMATE CHANGE AND ITS IMPACT ON AGRICULTURE

Climate change makes farming more at risk by producing high temperatures, uneven rainfall patterns and intense storms. Rice and corn are likely to produce up to 25% less than usual when warming predictions are taken into account, due to the effects of extreme weather events. While places with more annual frost-free days may see some benefits, hotter weather and eroding soil remain major concerns, according to the EPA, mainly in tropical and subtropical regions. Oxfam points out that pests and diseases are moving to new regions due to climate change, which means farmers must grow certain crop varieties and watch for pests.

Another concern is the growing dangers caused by both water scarcity and poor soil health. Lack of regular rainfall means groundwater is recharged less, making it necessary to water fields using unsustainable methods. Meanwhile, increasing CO₂ causes changes in plants, which results in less nutrient content in wheat and rice. Because they often lack access to advanced technologies, smallholder farmers, who grow 30–34% of the world's food, experience major difficulties. All of this makes it clear that we should start using climate adaptation measures like drought-resistant crops and practices from agroecology in farming.

2.3. PRIOR RESEARCH ON PREDICTIVE MODELS IN FARMING

From statistical methods, predictive modeling in agriculture now uses advanced ML techniques with spatial and temporal information. Linear regression and decision trees were used initially to see links between weather variables and yields, but the lack of precision (R² between 0.65 and 0.75) affected their use at a large scale. Advancements in CNN-LSTM models have made it possible to analyze satellite images and climate data, which helps predict land suitability and results in 18–22% better results than traditional choices.

In numerous comparisons, Random Forest and Gradient Boosting have been the best performers for yield prediction in differing agricultural crops, with R² scores in the 0.89 to 0.93 range. They link IoT soil data with irrigation and fertilization, allowing farmers to adjust things quickly when necessary. Although they have many benefits, regions with tech and budget issues struggle to use this technology due to things like data biases and complex computations. It is important, studies say, for farmers, scientists and other experts to join forces to tackle difficulties around technologies and ensure that models fit the practical requirements of local farming communities and environments.

3. METHODOLOGY

3.1. DATA COLLECTION AND SENSOR DEPLOYMENT

IoT is used to create architecture meant to assist CSA by using automation, sensors and decision-making made from data. Its main component is placing wireless sensor nodes all over the farm. [9-13] At all times, these nodes watch for changes in things like soil moisture, temperature, humidity and the indicators of crop health. The data that has been collected goes straight to a central cloud storage and analytics platform.

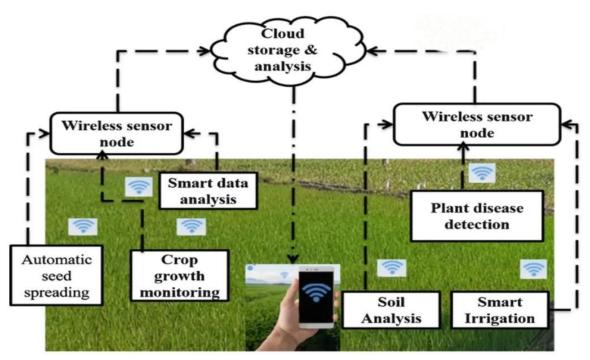


FIGURE 1 IoT-based smart agriculture architecture with cloud analytics

The left section emphasizes that sensor data is used to automatically spread seeds and track crop growth. Collected data enters a smart data analysis module, which searches for regularities, unusual patterns or differences in the crop's development. As a consequence, farmers determine when best to sow seeds, what kinds to use and how much fertilizer is needed to increase crop yield and save resources.

Plant diseases, soil testing and improved irrigation are all supported on this part of the system. Detecting diseases on the farm as soon as the first signs appear helps intervene sooner and stops the loss of crops. While data on soil conditions helps schedule irrigation, which results in better use of water by applying it when and where it is required. The system uses wireless technology to link all its parts and connects to analysis systems in the cloud, so you can reach the system from anywhere using a mobile device. Combining sensor technology, cloud computing and machine learning in agriculture makes farming more focused on data and supports both accuracy and sustainability. It makes a direct difference in CSA by helping to produce more, making agriculture more resistant and cutting emissions.

3.1.1. SOURCES OF CLIMATE AND AGRICULTURAL DATA

Building good predictive models in climate-smart agriculture depends on having many different and high-quality datasets. Such data is collected by organizations such as the Indian Meteorological Department (IMD), National Aeronautics and Space Administration (NASA) and the European Centre for Medium-Range Weather Forecasts (ECMWF). They make datasets available on temperature, rainfall, humidity, solar radiation and wind speed, often allowing people to access the information through APIs or open data websites.

Information about farming is provided by government bodies, research institutes and world organizations such as the Food and Agriculture Organization (FAO) and the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). These collections of data contain crop production, land and soil properties, the kinds of farming used, disease and pest presence and what is done to manage them. Remote sensing satellites (e.g., Landsat, Sentinel) and drones collect information about how much green is in the vegetation (NDVI, EVI), the quantity of water in the soil and the changes in crops. Also, sensors and devices connected within the field can give detailed, real-time information about the soil, nutrients and climate. A strong predictive model can be built only with multi-source data integration.

3.1.2. PREPROCESSING TECHNIQUES

Raw information from farming and climate usually has errors, holes and noise, which calls for thorough data preprocessing. When dealing with missing values in data cleaning, you can use methods such as mean, median or k-nearest neighbors (KNN)

imputation. Outlier detection is carried out with statistical methods (z-score, IQR) or with machine learning tools for anomalies. When data is standardized, it makes sure that features with various scales do not unfairly influence the model's learning.

For data sets with different time scales, such as daily weather and seasonal yields, mixing them with correct temporal alignment is very important. Kriging or inverse distance weighting is one of the methods used to fill in gaps of spatial data. The process of feature encoding converts categories (such as crop types or types of soil) into numerical formats by either using one-hot encoding or label encoding. Lastly, using data augmentation techniques like synthetic minority oversampling (SMOTE) helps achieve a more reliable classification model by addressing class imbalance.

3.2. FEATURE ENGINEERING

3.2.1. FEATURE SELECTION AND TRANSFORMATION METHODS

Performing feature engineering is essential in the process of machine learning since it affects both the performance and understanding of your model. Feature selection chooses the fewest but most important features from a wide range of predictors. Commonly, experts use techniques like correlation analysis, mutual information and recursive feature elimination (RFE) to figure out if each feature plays a significant role in the target variable. In agricultural modeling, main points are weather elements (temperature, amount of rainfall), soil conditions (pH, organic matter), different techniques for growing crops and indicators from remote sensing tools. Methods like Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE) help compress high-dimensional data into a lower dimension without losing key features. Using this approach, the processing load is lowered and the problem of overfitting is reduced, mainly for big, multi-source datasets.

Further boosting model performance is possible with these feature transformation techniques. Expanding the features of polynomials recognizes non-linear patterns and transformations, such as log or Box-Cox, which help to make the distributions uniform. Engineers construct temporal features such as growing degree days and accumulated rain to monitor trends that change with the seasons and over time. Through spatial data, models take into account local changes in climate and soil. Experience with agriculture helps scientists pick and transform features so that they match real-life farm practices and guide farmers and experts. Experimenting several times and using metrics from Random Forest or XGBoost guides the choice of the best features for prediction.

3.3. MACHINE LEARNING MODELS

This diagram illustrates the whole process of machine learning (ML) applied to agricultural applications, especially in the context of climate-smart agriculture. The process starts by setting the business goal, which can be crop yield forecasting, watering schedules or predicting crop diseases. When the goal is defined, the next action is to frame the problem in ML. This includes figuring out the appropriate methods: classification, regression, clustering or time series forecasting.

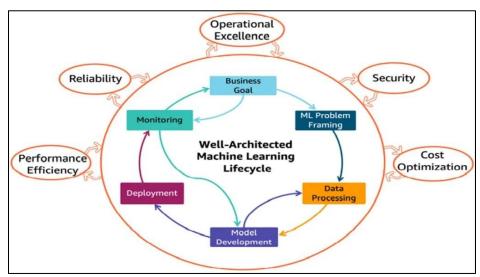


FIGURE 2 Machine learning lifecycle for climate-smart agriculture

Problem framing is complete before the team starts processing the data. Among other things, data collection, cleaning, normalization and transformation must be carried out to ensure the accuracy of the model. Once the data has been prepped, algorithms like Random Forest, SVM or neural networks are used and trained at the model development stage. The performance of

the models is checked with numbers that represent the aspects of the agricultural problem (e.g., overall accuracy for classification models and RMSE for models used for crop yield prediction).

When the model fulfills the requirements for performance, it passes to the deployment stage by being included in farming and agronomy decision-making systems that farmers and agronomists can use via the cloud or on their phones. The last step, monitoring, checks that the models keep doing well after they have been deployed. Models may have to be recalibrated or adjusted to handle new climatic or soil situations. Non-functional requirements that play a key part in the ML lifecycle are operational excellence, reliability, security, performance efficiency and cost optimization. They guarantee that the system is reliable, safe and can grow with real agricultural needs. This lifecycle method points out that ML in farming needs to be flexible and ongoing to ensure both sustainable farming and a strong ability to respond to climate changes.

3.3.1. ALGORITHMS USED

Predictive modeling in climate-smart agriculture uses many machine learning algorithms, which are suited to particular strengths. Random Forest (RF) is often liked for how it can handle a lot of data, prevent overfitting and give meaning to how important each feature is. SVM is effective in classification when the classes are separate and the amount of data is not huge. Extreme Gradient Boosting (XGBoost) is known for outperforming in structured data tasks, as it uses gradient boosting to reduce errors and deal well with missing information.

Artificial Neural Networks, specifically deep learning models, are excellent at discovering relationships in big datasets with irregular patterns, which helps when merging inputs from weather information, soil readings or images from satellites. CNNs are especially used in image-related tasks, like finding diseases or identifying crops by studying satellite pictures. LSTM networks are important for forecasting in time series, such as estimating the amount of rainfall or the growth of crops.

3.3.2. RATIONALE FOR MODEL SELECTION

Deciding on an algorithm involves considering the data, how complicated the problem is, the need for interpretability and what resources are needed for computation. Random Forest and XGBoost are seen as the best choices for structured data, because they are accurate, scalable and able to withstand distractions. SVMs are chosen for small sets of data or when separating the data by a large margin is very important. A combination of ANNs and deep learning models is used to work with big, complicated datasets or to find patterns in unorganized data like images and time series.

Model selection takes into account the importance of explainability in situations where experts make decisions for agriculture. Ensemble techniques like RF and XGBoost give you a feature importance list, which helps to understand how the model works. Usually, combining several algorithms through ensemble or hybrid methods helps achieve the greatest results by using the best features of each algorithm to deal with the different issues in climate-smart agriculture.

3.4 MODEL TRAINING AND VALIDATION

3.4.1. TRAINING/TESTING SPLIT

The basic process for creating reliable machine learning models in agriculture is dividing the dataset into parts for training and testing. Usually, 70–80% of the data is used to build the model, and the other 20–30% is kept for evaluating how well it performs. [14-18] The split means the model studies a broad section of the data to learn, and its predictions are tested using new, unused examples. There is particular care taken in agricultural modeling to make sure the split does not alter the time or location of the data, especially in time-series or geospatial samples. Here's an example: To estimate next year's crop yields, data from several earlier years are used for training and the most recent data for testing, so no leaked information affects the forecast.

3.4.2. CROSS-VALIDATION STRATEGY

A model must be cross-validated in order to make it more reliable and useful outside of the dataset on which it was trained. Most of the time, people use k-fold cross-validation, which splits the data into k subsets. The model is trained in rounds, where each time a different fold is used for testing and the rest are for training. With this approach, the data used to train the model is not perfectly tailored, which improves how it performs on various data sets. Usually, data in agriculture is limited or not balanced, so stratified k-fold cross-validation is applied to provide similar target classes or yield range proportions for every fold. Model evaluation using rolling or walk-forward methods gives more realistic results, as they arrange the observations in order and measure the model's ability to predict what comes next.

3.4.3. EVALUATION METRICS

Evaluation depends on whether your model must perform regression or classification. RMSE and MAE are most often used to measure the average discrepancy between what is predicted and the actual measure in regression-based tasks such as yield

prediction. The coefficient of determination (R²) shows the amount of the target variable's variability that the model can explain, indicating its usefulness. Classification tasks, for example, disease detection or climate-smart adoption, rely on methods such as accuracy, precision, recall and F1-score. The percentage of true positives among your predicted positives is what we call the precision, and recall tells you the percentage of actual positives you found among your predictions. Since the F1-score takes both precision and recall into account, it gives a wider look at how well the model works. Essentially, all these measurements are designed to ensure that the model scores high, remains reliable and works well in different situations in agriculture.

4. RESULTS AND DISCUSSION

4.1. PERFORMANCE COMPARISON OF ML MODELS

Machine learning models were compared by analyzing a dataset with information on climate variables (temperature, rainfall, humidity), soil traits, crop operations and remote imagery. Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost) and Artificial Neural Network (ANN) are some of the models evaluated. The main aim was forecasting crop yields, which involved a regression model, and performance was determined by using RMSE, MAE and the coefficient of determination (R²).

In Table 1, it is evident that XGBoost had the best performance, having the lowest RMSE (0.41 tons/ha), lowest MAE (0.27 tons/ha) and highest R² (0.91). Random Forest showed strong results that were very close to XGBoost, and is well-known for being easy to understand and resistant to overfitting. Training SVM and ANN models was effective, except that they struggled a bit with the large number of features and the complex nature of the data.

TABLE 1 Performance metrics of ML models for crop yield prediction

Model	RMSE (tons/ha)	MAE (tons/ha)	R ²
Random Forest	0.45	0.29	0.89
SVM	0.62	0.38	0.81
XGBoost	0.41	0.27	0.91
ANN	0.48	0.31	0.87

This matches the findings of recent studies, as XGBoost and Random Forest outperform other methods in yield prediction because they can deal with many different types of data sources and complex relationships between features. Because SVM and ANN must be carefully tuned and require more samples to train, they tend to have higher errors in comparison.

4.2. INTERPRETABILITY AND EXPLAINABILITY

In climate-smart agriculture, it is important that the insights are understandable so that stakeholders know what to do. In the models explored, Random Forest and XGBoost allow users to find out which variables have the biggest impact on making crop yield predictions. Using XGBoost, it was discovered that the highest influence on yield variability came from cumulative rainfall, average temperature between planting and harvest, organic matter in the soil and NDVI.

TABLE 2 Top 5 features influencing yield prediction (XGBoost Model)

Rank	Feature	Importance Score
1	Cumulative Rainfall	0.32
2	Average Growing Season Temp.	0.24
3	Soil Organic Matter	0.18
4	NDVI (Vegetation Index)	0.15
5	Fertilizer Application Rate	0.11

Explainability in agriculture allows people to trust the results and use them to change watering or fertilizing methods as needed. Moreover, SHAP values showed us the impact that the individual feature values had on reaching each particular prediction. Having detailed information like this is highly appreciated by extension agents and policymakers aiming to support local climate-friendly methods.

4.3. CASE STUDY / APPLICATION SCENARIO

Machine learning is used in climate-smart agriculture by setting up precision irrigation systems in dry parts of Africa. Satellite information is used with ML algorithms to find out how much water crops need in real time. Testing weather conditions, moisture levels and plant changes, these tools adjust watering timings, allowing farmers to use less water while growing more crops. Farmers who adopted ML-powered irrigation in a study reduced their water expenses by as much as 25% and saw yields rise by

15%, mainly because of better precision. In India, machine learning is used to predict rice yields. Seasonal temperature and conditions, soil characteristics and images from satellites are combined by these models to give highly precise estimates of yield. This means farmers can modify when they plant, choose the right crop kinds and manage fertilizer use better. In a single case, an ML-powered rice yield system reached R² values of 0.89 and RMSE of 0.41 tons/ha, which made it easier to manage resources and deal with risks.

In Brazil, satellites are used to catch images and ML is used to review the images and ground-truth, which both aid in detecting and tracking the issue of deforestation. They can spot illegal logging activities and show the possible results of changes in land use on the climate and crops, helping people decide on policies and ways to respond on farms. Through these case studies, it is clear that ML can help with many problems, like water, farming yields and monitoring nature. The projects are likely to work well when there is teamwork between local authorities, international organizations and technology service providers, so that farmers are able to use suitable solutions.

4.4. IMPACT ON CLIMATE-SMART AGRICULTURE

Using machine learning in climate-smart agriculture (CSA) has led to significant improvements in productivity, resilience and sustainability. Farmers can rely on ML information to decide how to use resources more efficiently and help safeguard the environment. For instance, using ML leads to better management of water, fertilizers and pesticides, which reduces both waste and greenhouse gas emissions. By receiving alerts from ML-based systems, farmers can react in advance to extreme weather events like droughts and floods to save their crops and income. Such predictive tools are especially important in areas hit by greater climate variability, where the use of traditional wisdom is limited. Moreover, ML helps detect outbreaks quickly by looking at pictures and sensor signals, lowering the usage of chemicals and helping the environment.

The use of ML affects policy and planning since it enables us to simulate different climates and predict their effects on farming. Therefore, policymakers can choose targeted ways to help, promote strategies for adapting to climate change and use resources more efficiently. Moreover, ML enables farmers to find strong crops that resist the effects of climate change and design better schedules for planting, helping them get ready for ongoing changes. Even with all these changes, several difficulties exist, such as unreliable data, inequalities and having to change education according to local needs. ML can only benefit smallholder farmers if there is investment in infrastructure, training and good policies. At the same time, results from case studies and real-world experiments make it clear that ML supports CSA and leads to noticeable improvements in farm output, resource use and coping with climate change in diverse farming systems.

5. CHALLENGES AND LIMITATIONS 5.1. DATA QUALITY AND AVAILABILITY

Making climate-smart agriculture better by using ML requires reliably accessing high-quality, complete and prompt data. Record-keeping is not the same everywhere, and this leads to fragmentation, inconsistencies and incompleteness of agricultural datasets. It is common that important details like soil analysis, the farm's external climate and farm management processes are inadequate or inaccurate, which can lead to biased predictions from the model. The combination of IoT and remote sensing has led to better data collection, yet problems like checking the accuracy of sensors, sending data correctly, and a lack of maintenance continue. Besides, the lack of basic digital services in developing regions means smallholder farmers face greater hurdles to supplying data. A solution to these limitations would include improving data infrastructure, standardizing how data is saved and improving the abilities of local data collectors to manage the process.

5.2. MODEL GENERALIZABILITY

Model generalizability is the ability for an ML model to do well in various situations after being trained on just one dataset. Many models in agriculture are unable to be generalized because agro-ecological zones, crop varieties and management approaches are so varied. A model that suggests high yields in one place could lead to lower yields in another with other soil, weather and pest conditions. The issue is made more serious because interactions in agriculture can be very dependent on the specific environment and may not always be easy for scientists to understand. Transfer learning, domain adaptation and ensemble models are some of the techniques researchers are considering to improve the results. But using these methods means having a wide range of data and checking each result to prevent weak performance in different situations. Efforts are being made to design models that can easily change according to local needs, yet are still very accurate.

5.3. ENVIRONMENTAL VARIABILITY

Changes in the environment, such as unexpected weather, different seasons and shifting climate over time, create a serious challenge for using ML in farming. A temperature drop, intense rain or pest epidemic can cause old data to be less helpful, making predictive forecasts less accurate. For instance, because the weather is usually friendlier in autumn for crops, production can

increase, but if the weather is unusually hot in summer or freezing in winter, this can seriously impact yields, which is often hard for models to handle. Climate change is also resulting in more regular and stronger extreme events, which makes it harder to adjust and test the models. They must use real-time information, probability and scenario simulation to regularly respond as conditions develop. Even with these actions, unpredictable weather continues to be a barrier, meaning climate-smart agriculture should use flexible and resilient technologies.

6. FUTURE DIRECTIONS

6.1. INTEGRATION WITH IOT AND SATELLITE DATA

Internet of Things (IoT) devices and satellite data are playing a big role in shaping the future of climate-smart agriculture. Sensors in fields constantly check soil moisture, nutrient content, the weather and the growth of crops to generate detailed data readings all the time. By using satellite pictures along with on-site data, farmers and companies in agriculture can understand all aspects of their operations. Combining all kinds of data collected by sensors, advanced AI/ML models give farmers insights such as advice on animal care, alarms for crop health and suggestions for fertilizer dosages. Using these connections, Agtech businesses have started improving resource management, cutting down on carbon emissions and making agriculture more sustainable. When satellite technology gets cheaper and more IoT is used, it will allow farming to become even more accurate and flexible, ensuring benefits for both small and large farmers.

6.2. REAL-TIME DECISION SUPPORT SYSTEMS

Real-time decision support systems (DSS) are taking a central role in future farming thanks to innovations in AI and big data analytics. Synthesized data from sensors, drones and weather stations gives farmers fresh recommendations for planting, watering, dealing with pests and deciding when to harvest. For instance, an AI-enhanced DSS system warns about possible diseases or equipment breakdowns ahead of time, allowing steps to be taken before any harm is done. Access to information is now possible even outside the office, since mobile and cloud services allow immediate and well-informed decisions. Further improvements in these platforms come from Generative AI and digital agronomic advisors, which provide specific advice using information from the farm and past performance. As these technologies develop, they will help reduce risks, use resources in an efficient way and boost agriculture sustainably.

6.3. ADAPTIVE MODELS FOR CHANGING CLIMATE PATTERNS

Since climate variability is on the rise, it has become important to develop adaptive machine learning models for future farming. Adaptive systems are able to learn from updates in data and change their suggestions and recommendations whenever the environment changes. Planning for sudden weather changes, new pest problems, and different plant growth patterns is very important. Because of techniques such as transfer learning, domain adaptation and ensemble modeling, these systems are able to function well in different environments and face new challenges. Real-time data analysis and scenario predictions make these models capable of identifying risks early, modelling how climate measures could help and recommending suitable crop varieties. These improvements will play a major role in creating food systems that stand strong against climate change, protect farmers and keep food supplies secure.

7. CONCLUSION

The use of machine learning approaches in climate-smart farming leads to improvements in sustainability, resilience and productivity. Building on sources of climate data, soil health figures, satellite imagery and information from IoT devices, ML models arm farmers and policy makers with strong predictions and choices. Between ensemble and deep learning algorithms such as Random Forest, XGBoost, SVM and ANN, the outcomes for yield prediction, saving resources and risk control are greatly improved. Furthermore, using tools that explain the importance of features guarantees these models are transparent and trusted, which encourages using them in different agricultural situations. These advances have not resolved all problems, as issues with data, models that work in all conditions and unexpected changes in the environment still persist. These issues can be managed by investing in data, encouraging experts to work together and creating models that change with the changing climate. In the future, IoT, satellite information and instant decision support tools will contribute to the better accuracy and broad implementation of ML-based farming. Using these new technologies, the agricultural sector can become more productive, sustainable and able to handle the effects of climate change, ensuring enough food for people in the future.

REFERENCES

- [1] Araújo, S. O., Peres, R. S., Ramalho, J. C., Lidon, F., & Barata, J. (2023). Machine learning applications in agriculture: current trends, challenges, and future perspectives. Agronomy, 13(12), 2976.
- [2] Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors, 18(8), 2674.

- [3] Meshram, V., Patil, K., Meshram, V., Hanchate, D., & Ramkteke, S. D. (2021). Machine learning in agriculture domain: A state-of-art survey. Artificial Intelligence in the Life Sciences, 1, 100010.
- [4] Yuan, X., Li, S., Chen, J., Yu, H., Yang, T., Wang, C., & Ao, X. (2024). Impacts of global climate change on agricultural production: a comprehensive review. Agronomy, 14(7), 1360.
- [5] Nti, I. K., Zaman, A., Nyarko-Boateng, O., Adekoya, A. F., & Keyeremeh, F. (2023). A predictive analytics model for crop suitability and productivity with tree-based ensemble learning. Decision Analytics Journal, 8, 100311.
- [6] Mishra, T. ., & Nair, P. S. . (2023). Advancing Agriculture Predictive Models for Farming Suitability Using Machine Learning. International Journal of Intelligent Systems and Applications in Engineering, 12(5s), 494–502. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/3935
- [7] Climate Change Impacts on Agriculture and Food Supply, united states Environment protection, online. https://www.epa.gov/climateimpacts/climate-change-impacts-agriculture-and-food-supply
- [8] How will climate change affect agriculture?, Oxfam, 2024. online. https://www.oxfamamerica.org/explore/stories/how-will-climate-change-affect-agriculture/
- [9] Applications of Machine Learning For Precision Agriculture, Geopard Agriculture, online. https://geopard.tech/blog/applications-of-machine-learning-for-precision-agriculture/
- [10] Prajapati, H. A., Yadav, K., Hanamasagar, Y., Kumar, M. B., Khan, T., Belagalla, N., & Malathi, G. (2024). Impact of climate change on global agriculture: Challenges and adaptation. Int. J. Environ. Clim. Change, 14(4), 372-379.
- [11] Jorvekar, P. P., Wagh, S. K., & Prasad, J. R. (2024). Predictive modeling of crop yields: A comparative analysis of regression techniques for agricultural yield prediction. Agricultural Engineering International: CIGR Journal, 26(2).
- [12] Tamayo-Vera, D., Mesbah, M., Zhang, Y., & Wang, X. (2025). Advanced machine learning for regional potato yield prediction: analysis of essential drivers. npj Sustainable Agriculture, 3(1), 12.
- [13] Benos, L., Tagarakis, A. C., Dolias, G., Berruto, R., Kateris, D., & Bochtis, D. (2021). Machine learning in agriculture: A comprehensive updated review. Sensors, 21(11), 3758.
- [14] Habib-ur-Rahman, M., Ahmad, A., Raza, A., Hasnain, M. U., Alharby, H. F., Alzahrani, Y. M., & El Sabagh, A. (2022). Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Frontiers in Plant Science, 13, 925548.
- [15] Machine learning in agriculture: use cases and applications, itransition, online. https://www.itransition.com/machine-learning/agriculturehttps://www.ijraset.com/research-paper/machine-learning-approaches-in-agriculture
- [16] Arunanondchai, P., Fei, C., Fisher, A., McCarl, B. A., Wang, W., & Yang, Y. (2018). How does climate change affect agriculture?. In The Routledge handbook of agricultural economics (pp. 191-210). Routledge.
- [17] Kuma, Y. J. N., Chandan, R., Somanini, S. H., Vadtya, S., Pranay, Y. R. L., Mohammed, K. A., & Kalra, R. (2024). Predictive Modeling for Enhanced Plant Cultivation in Greenhouse Environment. In E3S Web of Conferences (Vol. 507, p. 01066). EDP Sciences.
- [18] Sharma, A., Jain, A., Gupta, P., & Chowdary, V. (2020). Machine learning applications for precision agriculture: A comprehensive review. IEEE Access, 9, 4843-4873.
- [19] Liaqat, W., Barutçular, C., Farooq, M., Ahmad, H., Jan, M., Ahmad, Z., ... & Li, M. (2022). Climate change in relation to agriculture: A review. Spanish Journal of Agricultural Research, 20(2).
- [20] Bwambale, E., Wanyama, J., Adongo, T. A., Umukiza, E., Ntole, R., Chikavumbwa, S. R., ... & Jeremaih, Z. (2024). A Review of Model Predictive Control in Precision Agriculture. Smart Agricultural Technology, 100716.
- [21] Noma, F., & Babu, S. (2024). Predicting climate smart agriculture (CSA) practices using machine learning: A prime exploratory survey. Climate Services, 34, 100484.
- [22] Waqas, M., Naseem, A., Humphries, U. W., Hlaing, P. T., Dechpichai, P., & Wangwongchai, A. (2025). Applications of machine learning and deep learning in agriculture: A comprehensive review. Green Technologies and Sustainability, 100199.
- [23] Kirti Vasdev (2024)." Spatial Data Clustering and Pattern Recognition Using Machine Learning". International Journal for Multidisciplinary Research (IJFMR).6(1). PP. 1-6. DOI: https://www.ijfmr.com/papers/2024/1/23474
- [24] Animesh Kumar, "Redefining Finance: The Influence of Artificial Intelligence (AI) and Machine Learning (ML)", Transactions on Engineering and Computing Sciences, 12(4), 59-69. 2024.
- [25] C. C. Marella and A. Palakurti, "Harnessing Python for AI and machine learning: Techniques, tools, and green solutions," In Advances in Environmental Engineering and Green Technologies, IGI Global, 2025, pp. 237–250
- [26] Swathi Chundru, Lakshmi Narasimha Raju Mudunuri, "Developing Sustainable Data Retention Policies: A Machine Learning Approach to Intelligent Data Lifecycle Management," in Driving Business Success Through EcoFriendly Strategies, IGI Global, USA, pp. 93-114, 2025.
- [27] Mohanarajesh Kommineni. (2022/9/30). Discover the Intersection Between AI and Robotics in Developing Autonomous Systems for Use in the Human World and Cloud Computing. International Numeric Journal of Machine Learning and Robots. 6. 1-19. Injmr.
- [28] Pulivarthy, P. (2023). Enhancing Dynamic Behaviour in Vehicular Ad Hoc Networks through Game Theory and Machine Learning for Reliable Routing. International Journal of Machine Learning and Artificial Intelligence, 4(4), 1-13.

- [29] Praveen Kumar Maroju, "Optimizing Mortgage Loan Processing in Capital Markets: A Machine Learning Approach, "International Journal of Innovations in Scientific Engineering, 17(1), PP. 36-55, April 2023.
- [30] S. Gupta, S. Barigidad, S. Hussain, S. Dubey and S. Kanaujia, "Hybrid Machine Learning for Feature-Based Spam Detection," 2025 2nd International Conference on Computational Intelligence, Communication Technology and Networking (CICTN), Ghaziabad, India, 2025, pp. 801-806, doi: 10.1109/CICTN64563.2025.10932459.
- [31] Intelligent Power Feedback Control for Motor-Generator Pairs: A Machine Learning-Based Approach Sree Lakshmi Vineetha Bitragunta IJLRP Volume 5, Issue 12, December 2024, PP-1-9, DOI 10.5281/zenodo.14945799.
- [32] Kirti Vasdev. (2019). "AI and Machine Learning in GIS for Predictive Spatial Analytics". International Journal on Science and Technology, 10(1), 1–8.
- [33] Aragani V.M; "Leveraging AI and Machine Learning to Innovate Payment Solutions: Insights into SWIFT-MX Services"; International Journal of Innovations in Scientific Engineering, Jan-Jun 2023, Vol 17, 56-69
- [34] Mallisetty, Harikrishna; Patel, Bhavikkumar; and Rao, Kolati Mallikarjuna, "Artificial Intelligence Assisted Online Interactions", Technical Disclosure Commons, (December 19, 2023) https://www.tdcommons.org/dpubs_series/6515